TensorFlow学习笔记2-性能分析工具
TensorFlow学习笔记2-性能分析工具
性能分析工具
- 在spyder中运行以下代码:
import tensorflow as tf
from tensorflow.python.client import timeline
#构造计算图
x = tf.random_normal([1000, 1000])
y = tf.random_normal([1000, 1000])
res = tf.matmul(x, y)
#运行计算图, 同时进行跟踪
with tf.Session() as sess:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess.run(res, options=run_options, run_metadata=run_metadata)
#创建Timeline对象,并将其写入到一个json文件
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open('timeline.json', 'w') as f:
f.write(ctf)
使用with tf.Session() as sess进行处理,运算完成后会自动关闭session,不需要再显示地sess.close()
上述代码将session的运行情况写入到timeline.json文件。
注意:如果上述代码在spyder中报错,报错内容为 Couldn't open CUDA library cupti64_92.dll
解决办法: 用everything搜索cupti64_92.dll,并把它复制到你的CUDA环境变量对应的目录:如\CUDA\v9.2\bin\cupti64_92.dll
- 打开你的源文件路径,可以看到已经有了
timeline.json文件。在chrome浏览器中打开chrome://tracing/,然后load上述timeline.json文件,可以看到时序图。

- 进行分析:
左下角的Args中:
- name:输出tensor
- op:运算
- input0:输入tensor
以pid 3为例,是GPU:0的进程:点击NoOp,这意味着没有Op操作;然后是Const操作,它没有输入,输出是random_normal/shape;然后RandomStandardNormal操作,它输入是random_normal/shape,输出是random_normal/RandomStandardNormal;紧接着仍然是RandomStandardNormal操作,它输入也是random_normal/shape,输出是random_normal_1/RandomStandardNormal;最后是MatMul操作,输入是random_normal/RandomStandardNormal与random_normal_1/RandomStandardNormal,输出是MatMul。
- 指派设备
上述代码是默认指派到gpu0进行运算的,你也可以用with tf.device('/cpu:0')将运算指派到你想要的设备:例如,你可以将上述代码更改为:
import tensorflow as tf
from tensorflow.python.client import timeline
#构造计算图
with tf.device('/cpu:0'):
x = tf.random_normal([1000, 1000])
y = tf.random_normal([1000, 1000])
res = tf.matmul(x, y)
#运行计算图, 同时进行跟踪
with tf.Session() as sess:
run_options = tf.RunOptions(trace_level=tf.RunOptions.FULL_TRACE)
run_metadata = tf.RunMetadata()
sess.run(res, options=run_options, run_metadata=run_metadata)
#创建Timeline对象,并将其写入到一个json文件
tl = timeline.Timeline(run_metadata.step_stats)
ctf = tl.generate_chrome_trace_format()
with open('timeline.json', 'w') as f:
f.write(ctf)
在浏览器中打开timeline.json后,可以看到
- 常量的生成,随机矩阵的创建是在CPU进行运算;
- 将两个随机矩阵内存搬运到GPU(MEMCPYHtoD);
- 在GPU上进行MatMul运算;
- 将GPU的运算结果搬回CPU(MEMCPYDtoH)。
警告
当你每次调用 sess.run 时,一定要确保好,不要设置 FULL_TRACE,否则会降低训练的速度。可以每100-1k 次训练设置1次FULL_TRACE.
TensorFlow学习笔记2-性能分析工具的更多相关文章
- 「功能笔记」性能分析工具gprof使用笔记
根据网上信息整理所成. 功能与优劣 gprof实际上只是一个用于读取profile结果文件的工具.gprof采用混合方法来收集程序的统计信息,它使用检测方法,在编译过程中在函数入口处插入计数器用于收集 ...
- Linux 性能分析工具汇总合集
出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章.本文也可以作为检验基础知识的指标,另外文章涵盖了一个系统的方方面面.如果没有完善的计算机系统知识,网络知识和操作系统知识, ...
- TensorFlow学习笔记0-安装TensorFlow环境
TensorFlow学习笔记0-安装TensorFlow环境 作者: YunYuan 转载请注明来源,谢谢! 写在前面 系统: Windows Enterprise 10 x64 CPU:Intel( ...
- 性能分析工具-PerfView
Roslyn的PM(程序经理) Bill Chiles,Roslyn使用纯托管代码开发,但性能超过之前使用C++编写的原生实现,这有什么秘诀呢?他最近写了一篇文章叫做<Essential Per ...
- 老李分享:《Java Performance》笔记1——性能分析基础 1
老李分享:<Java Performance>笔记1——性能分析基础 1.性能分析两种方法: (1).自顶向下: 应用开发人员通过着眼于软件栈顶层的应用,从上往下寻找性能优化的机会. ...
- 系统级性能分析工具perf的介绍与使用[转]
测试环境:Ubuntu16.04(在VMWare虚拟机使用perf top存在无法显示问题) Kernel:3.13.0-32 系统级性能优化通常包括两个阶段:性能剖析(performance pro ...
- [转]Linux性能分析工具汇总合集
出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章.本文也可以作为检验基础知识的指标,另外文章涵盖了一个系统的方方面面.如果没有完善的计算机系统知识,网络知识和操作系统知识, ...
- 超全整理!Linux性能分析工具汇总合集
转自:http://rdc.hundsun.com/portal/article/731.html?ref=myread 出于对Linux操作系统的兴趣,以及对底层知识的强烈欲望,因此整理了这篇文章. ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
随机推荐
- [APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释)
[APIO2019] [LOJ 3145] 桥梁(分块+并查集)(有详细注释) 题面 略 分析 考试的时候就感觉子任务4是突破口,结果却写了个Kruskal重构树,然后一直想怎么在线用数据结构维护 实 ...
- java 注解 Annontation
什么是注解? 对于很多初次接触的开发者来说应该都有这个疑问?Annontation是Java5开始引入的新特征,中文名称叫注解.它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metada ...
- 基于URL的正则匹配
第一种的方式使用( <li><a target="_blank" href="/CC/detail/?nid={{ k}}">{{ ro ...
- 什么是Azkaban?
Azkaban是什么 Azkaban是由Linkedin开源的做批量工作流任务的调度器.在一个工作流内按照特定的顺序运行一组工作和流程.Azkaban定义了一种KV文件格式来建立任务之间的相互依赖关系 ...
- 安装运行谷歌开源的TensorFlow Object Detection API视频物体识别系统
Linux安装 参照官方文档:https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/inst ...
- 模块学习笔记-IR2110/IR2130(上)
引言 IR2110 / IR2113是高压,高速功率MOSFET和IGBT驱动器,具有独立的高端和低端参考输出通道.逻辑输入与标准CMOS或LSTTL输出兼容,低至3.3V逻辑.浮动通道可用于驱动高端 ...
- open, creat - 用来 打开和创建 一个 文件或设备
SYNOPSIS 总览 #includ e <sys/types.h> #include <sys/stat.h> #include <fcntl.h> int o ...
- linux里面以指定用户运行命令
一.chroot方式 [root@localhost ~]# chroot --userspec "nginx:nginx" "/" sh -c "w ...
- js 鼠标效果
一. 鼠标悬停效果和离开效果 鼠标效果和v-if 配合使用效果很好 <a class="all btn" href="#" v-on:mouseover= ...
- Julia 语言
同时安装多个库 Pkg.add.(["IJulia", "Combinatorics", "Plots", "TaylorSeri ...