POJ 3525 Most Distant Point from the Sea (半平面交)
Description
The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.
In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.
Input
The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
n | ||
x1 | y1 | |
⋮ | ||
xn | yn |
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.
n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1) (1 ≤ i ≤ n − 1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.
You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.
The last dataset is followed by a line containing a single zero.
Output
For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
Sample Input
4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0
Sample Output
5000.000000
494.233641
34.542948
0.353553 转载:http://blog.csdn.net/non_cease/article/details/7814970
题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离。
思路 : 每次将凸多边形每条边往里平移d,判断是否存在核;二分d即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; const double eps = 1e-;
const int maxn = ; int dq[maxn], top, bot, pn, order[maxn], ln;
struct Point {
double x, y;
} p[maxn]; struct Line {
Point a, b;
double angle;
} l[maxn], tmp[maxn]; int dblcmp(double k) {
if (fabs(k) < eps) return ;
return k > ? : -;
} double multi(Point p0, Point p1, Point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
} bool cmp(int u, int v) {
int d = dblcmp(l[u].angle-l[v].angle);
if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > ;
return d < ;
} void getIntersect(Line l1, Line l2, Point& p) {
double dot1,dot2;
dot1 = multi(l2.a, l1.b, l1.a);
dot2 = multi(l1.b, l2.b, l1.a);
p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
} bool judge(Line l0, Line l1, Line l2) {
Point p;
getIntersect(l1, l2, p);
return dblcmp(multi(p, l0.a, l0.b)) < ;
} void addLine(double x1, double y1, double x2, double y2) {
l[ln].a.x = x1; l[ln].a.y = y1;
l[ln].b.x = x2; l[ln].b.y = y2;
l[ln].angle = atan2(y2-y1, x2-x1);
ln++;
} bool halfPlaneIntersection(Line l[], int n) {
int i, j;
for (i = ; i < n; i++) order[i] = i;
sort(order, order+n, cmp);
for (i = , j = ; i < n; i++)
if (dblcmp(l[order[i]].angle-l[order[j]].angle) > )
order[++j] = order[i];
n = j + ;
dq[] = order[];
dq[] = order[];
bot = ;
top = ;
for (i = ; i < n; i++) {
while (bot < top && judge(l[order[i]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[order[i]], l[dq[bot+]], l[dq[bot]])) bot++;
dq[++top] = order[i];
}
while (bot < top && judge(l[dq[bot]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[dq[top]], l[dq[bot+]], l[dq[bot]])) bot++;
if (bot + >= top) return false; //当dq中少于等于两条边时,说明半平面无交集
return true;
} double getDis(Point a, Point b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void changePolygon(double h) { //每次将直线向里面平移距离h
double len, dx, dy;
for (int i = ; i < ln; i++) {
len = getDis(l[i].a, l[i].b);
dx = (l[i].a.y - l[i].b.y) / len * h;
dy = (l[i].b.x - l[i].a.x) / len * h;
tmp[i].a.x = l[i].a.x + dx;
tmp[i].a.y = l[i].a.y + dy;
tmp[i].b.x = l[i].b.x + dx;
tmp[i].b.y = l[i].b.y + dy;
tmp[i].angle = l[i].angle;
}
} double BSearch() {
double l = , r = , mid;
while (l + eps < r) {
mid = (l + r) / ;
changePolygon(mid);
if (halfPlaneIntersection(tmp, ln))
l = mid;
else r = mid;
}
return l;
} int main()
{
int i; while (scanf ("%d", &pn) && pn) {
for (i = ; i < pn; i++)
scanf ("%lf%lf", &p[i].x, &p[i].y);
for (i = ln = ; i < pn-; i++)
addLine(p[i].x, p[i].y, p[i+].x, p[i+].y);
addLine(p[i].x, p[i].y, p[].x, p[].y); printf ("%.6lf\n", BSearch());
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- 【POJ】【3525】Most Distant Point from the Sea
二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
随机推荐
- Java控制台输入字符串及字符串比较
需求描述:茵茵很喜欢研究车牌号码,从车牌号码上可以看出号码注册的早晚,据研究发现,车牌号码是按字典序发放的,现在她收集了很多车牌号码,请你设计程序帮她判断注册较早的号码.车牌号码由5个字母或数字组成. ...
- elasticsearch 集群搭建及启动常见错误
1.系统环境 三台服务器(最好是单数台,跟master选举方式有关),确保机器互相ping的通,且都需要装了jdk 8环境,机器IP和 elasticsearch 的节点名称如下: cluster n ...
- import的项目结构不对
问题如下,在我们新导入一个maven项目时,碰到这样的目录结构,总有点别扭,而且在运行Tomcat的时候,突然发现build i选项下面少了两个我们经常使用的两个选项 window --Perspe ...
- CEF3 命令行 CefCommandLine 所有选项 与 开发中使用的测试网址
转自: https://blog.csdn.net/xiezhongyuan07/article/details/86640413 1.cef3 commandLine设置 在cef3开发过程中,在O ...
- 应用安全 - Web安全 - 文件包含攻防
LFI - 无限制本地文件包含 通过目录遍历漏洞可以获取到系统中其他文件的内容 常见的敏感信息路径 Windows系统 c:\boot.ini // 查看系统版本 c:\windows\system3 ...
- SAP smartforms打印数据出框线或跟框线重叠,但是预览是正常的
如图,打印内容压在框线上,但是打印预览是正常的 预览图如下,预览是正常的 预览用PDF!命令,导出PDF,也是正常的,就直接打印有问题,不是打印机的问题,用Adobe PDF打印机也是不行 如果只有一 ...
- SAS去空格
data test; x=" aaa bbb hahaha"; x1=compress(x); x2=left(x); p ...
- 前端webpack & vue
地址 : https://blog.csdn.net/jiang7701037
- 洛谷 P1589 泥泞路 & 2019青岛市竞赛(贪心)
题目链接 https://www.luogu.org/problemnew/show/P1589 解题思路 用结构体存下每一段泥泞路的左端点和右端点,然后用sort根据左端点排序,采用贪心的思想,从左 ...
- 对于nginx配置文件中的fastcgi_param相关参数的理解
今天在ubuntu中搭建LNMP的时候,遇到了一个问题 在浏览器中访问.php文件的时候,nginx不能正常解析,页面只是空白,后来百度了一下,发现了问题 在nginx的配置文件nginx.conf中 ...