POJ 3525 Most Distant Point from the Sea (半平面交)
Description
The main land of Japan called Honshu is an island surrounded by the sea. In such an island, it is natural to ask a question: “Where is the most distant point from the sea?” The answer to this question for Honshu was found in 1996. The most distant point is located in former Usuda Town, Nagano Prefecture, whose distance from the sea is 114.86 km.
In this problem, you are asked to write a program which, given a map of an island, finds the most distant point from the sea in the island, and reports its distance from the sea. In order to simplify the problem, we only consider maps representable by convex polygons.
Input
The input consists of multiple datasets. Each dataset represents a map of an island, which is a convex polygon. The format of a dataset is as follows.
| n | ||
| x1 | y1 | |
| ⋮ | ||
| xn | yn |
Every input item in a dataset is a non-negative integer. Two input items in a line are separated by a space.
n in the first line is the number of vertices of the polygon, satisfying 3 ≤ n ≤ 100. Subsequent n lines are the x- and y-coordinates of the n vertices. Line segments (xi, yi)–(xi+1, yi+1) (1 ≤ i ≤ n − 1) and the line segment (xn, yn)–(x1, y1) form the border of the polygon in counterclockwise order. That is, these line segments see the inside of the polygon in the left of their directions. All coordinate values are between 0 and 10000, inclusive.
You can assume that the polygon is simple, that is, its border never crosses or touches itself. As stated above, the given polygon is always a convex one.
The last dataset is followed by a line containing a single zero.
Output
For each dataset in the input, one line containing the distance of the most distant point from the sea should be output. An output line should not contain extra characters such as spaces. The answer should not have an error greater than 0.00001 (10−5). You may output any number of digits after the decimal point, provided that the above accuracy condition is satisfied.
Sample Input
4
0 0
10000 0
10000 10000
0 10000
3
0 0
10000 0
7000 1000
6
0 40
100 20
250 40
250 70
100 90
0 70
3
0 0
10000 10000
5000 5001
0
Sample Output
5000.000000
494.233641
34.542948
0.353553 转载:http://blog.csdn.net/non_cease/article/details/7814970
题意:给定一个凸多边形,求多边形中距离边界最远的点到边界的距离。
思路 : 每次将凸多边形每条边往里平移d,判断是否存在核;二分d即可。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
using namespace std; const double eps = 1e-;
const int maxn = ; int dq[maxn], top, bot, pn, order[maxn], ln;
struct Point {
double x, y;
} p[maxn]; struct Line {
Point a, b;
double angle;
} l[maxn], tmp[maxn]; int dblcmp(double k) {
if (fabs(k) < eps) return ;
return k > ? : -;
} double multi(Point p0, Point p1, Point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p1.y-p0.y)*(p2.x-p0.x);
} bool cmp(int u, int v) {
int d = dblcmp(l[u].angle-l[v].angle);
if (!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > ;
return d < ;
} void getIntersect(Line l1, Line l2, Point& p) {
double dot1,dot2;
dot1 = multi(l2.a, l1.b, l1.a);
dot2 = multi(l1.b, l2.b, l1.a);
p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
} bool judge(Line l0, Line l1, Line l2) {
Point p;
getIntersect(l1, l2, p);
return dblcmp(multi(p, l0.a, l0.b)) < ;
} void addLine(double x1, double y1, double x2, double y2) {
l[ln].a.x = x1; l[ln].a.y = y1;
l[ln].b.x = x2; l[ln].b.y = y2;
l[ln].angle = atan2(y2-y1, x2-x1);
ln++;
} bool halfPlaneIntersection(Line l[], int n) {
int i, j;
for (i = ; i < n; i++) order[i] = i;
sort(order, order+n, cmp);
for (i = , j = ; i < n; i++)
if (dblcmp(l[order[i]].angle-l[order[j]].angle) > )
order[++j] = order[i];
n = j + ;
dq[] = order[];
dq[] = order[];
bot = ;
top = ;
for (i = ; i < n; i++) {
while (bot < top && judge(l[order[i]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[order[i]], l[dq[bot+]], l[dq[bot]])) bot++;
dq[++top] = order[i];
}
while (bot < top && judge(l[dq[bot]], l[dq[top-]], l[dq[top]])) top--;
while (bot < top && judge(l[dq[top]], l[dq[bot+]], l[dq[bot]])) bot++;
if (bot + >= top) return false; //当dq中少于等于两条边时,说明半平面无交集
return true;
} double getDis(Point a, Point b) {
return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
} void changePolygon(double h) { //每次将直线向里面平移距离h
double len, dx, dy;
for (int i = ; i < ln; i++) {
len = getDis(l[i].a, l[i].b);
dx = (l[i].a.y - l[i].b.y) / len * h;
dy = (l[i].b.x - l[i].a.x) / len * h;
tmp[i].a.x = l[i].a.x + dx;
tmp[i].a.y = l[i].a.y + dy;
tmp[i].b.x = l[i].b.x + dx;
tmp[i].b.y = l[i].b.y + dy;
tmp[i].angle = l[i].angle;
}
} double BSearch() {
double l = , r = , mid;
while (l + eps < r) {
mid = (l + r) / ;
changePolygon(mid);
if (halfPlaneIntersection(tmp, ln))
l = mid;
else r = mid;
}
return l;
} int main()
{
int i; while (scanf ("%d", &pn) && pn) {
for (i = ; i < pn; i++)
scanf ("%lf%lf", &p[i].x, &p[i].y);
for (i = ln = ; i < pn-; i++)
addLine(p[i].x, p[i].y, p[i+].x, p[i+].y);
addLine(p[i].x, p[i].y, p[].x, p[].y); printf ("%.6lf\n", BSearch());
}
return ;
}
POJ 3525 Most Distant Point from the Sea (半平面交)的更多相关文章
- POJ 3525 Most Distant Point from the Sea [半平面交 二分]
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 5153 ...
- POJ 3525 Most Distant Point from the Sea
http://poj.org/problem?id=3525 给出一个凸包,要求凸包内距离所有边的长度的最小值最大的是哪个 思路:二分答案,然后把凸包上的边移动这个距离,做半平面交看是否有解. #in ...
- POJ 3525 Most Distant Point from the Sea (半平面交+二分)
Most Distant Point from the Sea Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 3476 ...
- LA 3890 Most Distant Point from the Sea(半平面交)
Most Distant Point from the Sea [题目链接]Most Distant Point from the Sea [题目类型]半平面交 &题解: 蓝书279 二分答案 ...
- POJ 3525 Most Distant Point from the Sea (半平面交向内推进+二分半径)
题目链接 题意 : 给你一个多边形,问你里边能够盛的下的最大的圆的半径是多少. 思路 :先二分半径r,半平面交向内推进r.模板题 #include <stdio.h> #include & ...
- POJ 3525 Most Distant Point from the Sea 二分+半平面交
题目就是求多变形内部一点. 使得到任意边距离中的最小值最大. 那么我们想一下,可以发现其实求是看一个圆是否能放进这个多边形中. 那么我们就二分这个半径r,然后将多边形的每条边都往内退r距离. 求半平面 ...
- POJ3525 Most Distant Point from the Sea(半平面交)
给你一个凸多边形,问在里面距离凸边形最远的点. 方法就是二分这个距离,然后将对应的半平面沿着法向平移这个距离,然后判断是否交集为空,为空说明这个距离太大了,否则太小了,二分即可. #pragma wa ...
- 【POJ】【3525】Most Distant Point from the Sea
二分+计算几何/半平面交 半平面交的学习戳这里:http://blog.csdn.net/accry/article/details/6070621 然而这题是要二分长度r……用每条直线的距离为r的平 ...
- POJ 3525/UVA 1396 Most Distant Point from the Sea(二分+半平面交)
Description The main land of Japan called Honshu is an island surrounded by the sea. In such an isla ...
随机推荐
- HttpSessionBindingListener和HttpSessionAttributeListener区别
HttpSessionBindingListener和HttpSessionAttributeListener是两个经常让初学者弄混的监听器,其实它们有很大的区别.这2个监听器在文章中简称为Bindi ...
- Delphi中Tlist实例
http://blog.163.com/jiandande3218@126/blog/static/74728469201132721428194/ Delphi中Tlist实例 2011-04-27 ...
- IoC与DI,Unity的使用
IoC的全称为Inversion of Control(控制反转),DI的全称为Dependency Injection(依赖注入).IoC是一个控制容器,我们将设计好的对象放入到容器中,将对象交给容 ...
- Fira Code,可以让不等号!=直接显示出来的字体
今天看B站某直播间有人写代码C#里一堆不等号直接显示,感觉很神奇,以为是插件还是什么新语法,托人问了下原来是Fira Code字体 https://github.com/tonsky/FiraCode ...
- (Vue)移动端点击输入框,弹出键盘,底部被顶起问题
(Vue)移动端点击输入框,弹出键盘,底部被顶起问题:https://www.jianshu.com/p/210fbc846544 问题描述:Vue开发中,当我们相对于父视图的底部布局子控件时,需要用 ...
- bfs(火星撞地球)
Meteor Shower 链接:https://ac.nowcoder.com/acm/contest/997/I来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 327 ...
- P2737 [USACO4.1]麦香牛块Beef McNuggets
题目描述 农夫布朗的奶牛们正在进行斗争,因为它们听说麦当劳正在考虑引进一种新产品:麦香牛块.奶牛们正在想尽一切办法让这种可怕的设想泡汤.奶牛们进行斗争的策略之一是“劣质的包装”.“看,”奶牛们说,“如 ...
- 使用redis来存储session,不同框架对session的命名规则是不一样的
今天做了一个测试,在同一个云服务器上,搭建了两个server,其中一个是用laravel框架写的,另外一个使用原生php开发的,为了提高访问的速度,使用云服务器中的redis来存储session数据, ...
- P4132 [BJOI2012]算不出的等式
传送门 看到这个式子就感觉很有意思 左边就是求一次函数 $y=\left \lfloor \frac{q}{p} \right \rfloor x$ 在 $x \in [0,(p-1)/2]$ 时函数 ...
- mysql处理重复数据仅保留一条记录
目的:去除(或删除)一个表里面手机号重复的数据,但是需要保留其中一个记录,换句话说,表里面手机号不为空的数据,一个手机有且只有一条记录 表结构: CREATE TABLE `account` ( `i ...