51nod 1228 序列求和(伯努利数)
题目来源: HackerRank
基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n)。给出n和k,求S(n)。
例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55。
由于结果很大,输出S(n) Mod 1000000007的结果即可。
Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 5000)
第2 - T + 1行:每行2个数,N, K中间用空格分割。(1 <= N <= 10^18, 1 <= K <= 2000)
Output
共T行,对应S(n) Mod 1000000007的结果。
Input示例
3
5 3
4 2
4 1
Output示例
225
30
10
#include<bits/stdc++.h>
#define MOD 1000000007
#define P 1000000007
using namespace std;
typedef long long ll;
int T;ll n;int k;
int fac[2005],inv[2005];
int c[2005][2005];
int B[2005];//伯努利数
void init()//伯努利数打表
{
//Pre(2004);
B[0]=1;
c[0][0]=1;
for (int i=1;i<2004;i++)
{
for (int j=1;j<=i;j++) c[i][j]=(c[i-1][j-1]+c[i-1][j]) % MOD;
c[i][0]=1;
}
inv[1]=1;
for (int i=2;i<2001;i++) inv[i]=(ll)inv[MOD % i] * (MOD-MOD/i) % MOD;
for (int i=1;i<2001;i++)
{
B[i]=0;
for (int k=0;k<i;k++) B[i]=(B[i]+(ll)c[i+1][k]*B[k] % MOD) % MOD;
B[i]=((ll)B[i]*(-inv[i+1]) % MOD+MOD)%MOD;
}
}
ll ans;
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif // ONLINE_JUDGE
init();
ll tmp;
scanf("%d",&T);
while (T--)
{
cin>>n>>k;
n++; n%=MOD; tmp=n;
ans=0;
for (int i=1;i<=k+1;i++)
{
ans=(ans+(ll)c[k+1][i]*B[k+1-i]%MOD*n%MOD) % MOD;
n=(ll)n*tmp % MOD;
}
ans=(ll)ans*inv[k+1] % MOD;
cout<<ans<<endl;
}
return 0;
}
51nod 1228 序列求和(伯努利数)的更多相关文章
- 51Nod - 1228 序列求和 (自然数幂和+伯努利数)
https://vjudge.net/problem/51Nod-1228 Description T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k, ...
- 51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )
C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过 ...
- 51Nod 1228 序列求和
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^ ...
- 51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50 ...
- 51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131 ...
- [51nod 1822]序列求和
\(k\leq 200000\) 考虑转化成枚举 \(k\) 的形式 我们错位相减! \[A_k=\sum_{i=1}^N i^K\times R^i \\ RA_k=\sum_{i=2}^{N+1} ...
- [51nod]1229 序列求和 V2(数学+拉格朗日差值)
题面 传送门 题解 这种颓柿子的题我可能死活做不出来-- 首先\(r=0\)--算了不说了,\(r=1\)就是个裸的自然数幂次和直接爱怎么搞怎么搞了,所以以下都假设\(r>1\) 设 \[s_p ...
- 【51Nod1258】序列求和V4(FFT)
[51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间 ...
- HDU 5358 First One 求和(序列求和,优化)
题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要 ...
随机推荐
- excel常用公式--关联匹配类
index: 根据位置返回单元格的值. match: 根据单元格的值返回位置. index+match替代vlookup rank:返回一列数字的数字排位.数字的排位是其相对于列表中其他值的大小.
- Mycat+Mysql主从复制实现双机热备
Mycat+Mysql主从复制实现双机热备 一.mysql主从配置原理 双机热备的概念简单说一下,就是要保持两个数据库的状态自动同步.对任何一个数据库的操作都自动应用到另外一个数据库,始终保持两个数据 ...
- 洛谷 P1472 奶牛家谱 Cow Pedigrees 题解
题面 这道题我觉得是个不错的题: 根据题意可以较清晰的发现ans只和n和k有关:(因为输入的只有这两个数啊~): 那么设f[i][j]表示前i层用了j个节点的方案数,g[i][j]表示深度小于等于i并 ...
- 03: redis高级
1.1 布隆过滤器 1.布隆过滤器是什么?(判断某个key一定不存在) 1. 本质上布隆过滤器是一种数据结构,比较巧妙的概率型数据结构 2. 特点是高效地插入和查询,可以用来告诉你 “某样东西一定不存 ...
- python-day17(正式学习)
目录 包 一.什么是包? 二.为什么要有包? 三.如何用包? 3.1 模块和包 3.2 扩展模块功能 3.3 修改__init__.py文件 绝对导入和相对导入 注意事项 模块不来总结了,直接去htt ...
- 一种在获取互斥锁陷入阻塞时可以被中断的 lock
经过上篇的实例 线程在陷入阻塞时,在sychronized获取互斥锁陷入阻塞时,我们是无法进行中断的,javase5中提供了一种解决的办法 ReentrantLock ,我们常常用到的是它的lock( ...
- JavaSE--面向对象
面向对象(Object Oriented) 面向对象是一种思想,是基于面向过程而言的,就是说面向对象是将功能等通过对象来实现,将功能封装进对象之中,让对象去实现具体的细节:这种思想是将数据作为第一位, ...
- jQuery jsonp跨域请求详解
跨域的安全限制都是对浏览器端来说的,服务器端是不存在跨域安全限制的. 浏览器的同源策略限制从一个源加载的文档或脚本与来自另一个源的资源进行交互. 如果协议,端口和主机对于两个页面是相同的,则两个页面具 ...
- 18.AutoMapper 之条件映射(Conditional Mapping)
https://www.jianshu.com/p/8ed758ed3c63 条件映射(Conditional Mapping) AutoMapper 允许你给属性添加条件,只有在条件成立的情况下该成 ...
- Homebrew学习(二)之安装、卸载、更新
安装 1.网上的安装方法都是用curl,从官网找到命令复制到终端,然后回车,结果报错请求超时 /usr/bin/ruby -e "$(curl -fsSL https://raw.githu ...