URAL 1057 Amount of Degrees (数位dp)
18 = 24+21,
20 = 24+22.
Input
2 ≤ B ≤ 10).
Output
Sample
Input
15 20
2 2
Output
3
所求的数为互不相等的幂之和,亦即其B 进制表示的各位数字都只能是0和1。因此,我们只需讨论二进制的情况,其他进制都可以转化为二进制求解。
很显然,数据范围较大,不可能采用枚举法,算法复杂度必须是log(n)级别,因此我们要从数位上下手。
本题区间满足区间减法,因此可以进一步简化问题:令count[i..j]表示[i..j]区间内合法数的个数,则count[i..j]=count[0..j]-count[0..i-1]。换句话说,给定n,我们只需求出从0 到n有多少个符合条件的数。
假设n=13,其二进制表示为1101,K=3。我们的目标是求出0 到13中二进制表示含3个1 的数的个数。为了方便思考,让我们画出一棵高度为4 的完全二叉树:

为了方便起见,树的根用0 表示。这样,这棵高度为4 的完全二叉树就可以表示所有4位二进制数(0..24-1),每一个叶子节点代表一个数。其中,红色路径表示n。所有小于n的
数组成了三棵子树,分别用蓝色、绿色、紫色表示。因此,统计小于13 的数,就只需统计这三棵完整的完全二叉树:统计蓝子树内含3 个1的数的个数、统计绿子树内含2 个1 的数的个数(因为从根到此处的路径上已经有1 个1),
以及统计紫子树内含1个1 的数的个数。
注意到,只要是高度相同的子树统计结果一定相同。而需要统计的子树都是“右转”时遇到的。当然,我们不能忘记统计n 本身。实际上,在算法最初时将n 自加1,可以避免讨论n
本身,但是需要注意防止上溢。剩下的问题就是,如何统计一棵高度为i的完全二叉树内二进制表示中恰好含有j个1的数的个数。这很容易用递推求出:设f[i,j]表示所求,则分别统计左右子树内符合条件数的个数
,有f[i,j]=f[i-1,j]+f[i-1,j-1]。
这样,我们就得出了询问的算法:首先预处理f,然后对于输入n,我们在假想的完全二叉树中,从根走到n所在的叶子,每次向右转时统计左子树内数的个数。
最后的问题就是如何处理非二进制。对于询问n,我们需要求出不超过n的最大B进制表示只含0、1的数:找到n 的左起第一位非0、1 的数位,将它变为1,并将右面所有数位设为1。将得到的B进制表示视为二进制进行询问即可。
代码如下:
#include <bits/stdc++.h> using namespace std;
int f[][],d[];
void init ()//其实这就是个杨辉三角形
{
memset(f,,sizeof f);
f[][]=;
for (int i=;i<=;++i)
{
f[i][]=;
for (int j=;j<=i;++j)
f[i][j]=f[i-][j-]+f[i-][j];
}
}
int calc (int x,int k)
{
int tot=,ans=;
for (int i=;i>;--i)
{
if (x&(<<i))//x的第i+1位是不是1
{
tot++;
//printf("i=%d tot=%d\n",i,tot);
if (tot>k)
break;
x^=(<<i);//把这位削成0
}
if (<<(i-)&x)//能否右转,能则统计左子树,即i-1位选0
{
//printf("i-1=%d tot=%d f=%d\n",i-1,tot,f[i-1][k-tot]);
ans+=f[i-][k-tot];
} }
if (tot+x==k)//如果全都是1,则没有统计,++ans补上
ans++;
//printf("ans=%d\n",ans);
return ans;
}
int transfer (int b,int x)//将x,y转换成等价的二进制数
{
int m=,ans=;
while (x)
{
d[m++]=x%b;
x/=b;
}
for (int i=m-;i>=;--i)
{
if (d[i]>)
{
for (int j=i;j>=;j--)
ans|=(<<j);
}
else
ans|=d[i]<<i;
}
return ans;
}
int main()
{
//freopen("de,txt","r",stdin);
long long int x,y;
int k,b;
init();
while (~scanf("%lld%lld",&x,&y))
{
scanf("%d %d",&k,&b);
x=transfer(b,x-);
y=transfer(b,y);
printf("%d\n",calc(y,k)-calc(x,k));
}
return ;
}
论文参照《浅谈数位类统计问题》 作者:山东省青岛第二中学 刘聪
URAL 1057 Amount of Degrees (数位dp)的更多相关文章
- URAL 1057. Amount of Degrees(数位DP)
题目链接 我看错题了...都是泪啊,不存在3*4^2这种情况...系数必须为1... #include <cstdio> #include <cstring> #include ...
- [ACM] ural 1057 Amount of degrees (数位统计)
1057. Amount of Degrees Time limit: 1.0 second Memory limit: 64 MB Create a code to determine the am ...
- Ural 1057 Amount of Degrees
Description 问[L,R]中有多少能表示k个b次幂之和. Sol 数位DP. 当2进制时. 建出一个二叉树, \(f[i][j]\) 表示长度为 \(i\) 有 \(j\) 个1的个数. 递 ...
- Ural1057 - Amount of Degrees(数位DP)
题目大意 求给定区间[X,Y]中满足下列条件的整数个数:这个数恰好等于K个互不相等的B的整数次幂之和.例如,设X=15,Y=20,K=2,B=2,则有且仅有下列三个数满足题意: 输入:第一行包含两个整 ...
- ural 1057 Amount of degrees 【数位dp】
题意:求(x--y)区间转化为 c 进制 1 的个数为 k 的数的出现次数. 分析:发现其满足区间减法,所以能够求直接求0---x 的转化为 c 进制中 1 的个数为k的数的出现次数. 首先用一个数组 ...
- URAL 1057 Amount of Degrees (数位DP,入门)
题意: 求给定区间[X,Y]中满足下列条件的整数个数:这个数恰好等于K个互不相等的,B的整数次幂之和.例如,设X=15,Y=20,K=2,B=2,则有且仅有下列三个数满足了要求: 17 = 24+2 ...
- [ural1057][Amount of Degrees] (数位dp+进制模型)
Discription Create a code to determine the amount of integers, lying in the set [X; Y] and being a s ...
- Timus Online Judge 1057. Amount of Degrees(数位dp)
1057. Amount of Degrees Time limit: 1.0 second Memory limit: 64 MB Create a code to determine the am ...
- ural 1057Amount of Degrees ——数位DP
link:http://acm.timus.ru/problem.aspx?space=1&num=1057 论文: 浅谈数位类统计问题 刘聪 #include <iostream&g ...
随机推荐
- Activation functions on the Keras
sigmoid tanh tanh函数定义如下: 激活函数形状: ReLU 大家族 ReLU softmax 函数 softmax是一个函数,其主要用于输出节点的分类,它有一个特点,所以的值相加会等于 ...
- commons-fileupload-1.2.1.jar 插件上传与下载
1:首先在页面上写个文本域: <%@ page language="java" import="java.util.*" pageEncoding=&qu ...
- JS中的立即执行函数
JS 立即执行函数可以让函数在创建后立即执行,这种模式本质上就是函数表达式(命名的或者匿名的),在创建后立即执行. 1.立即执行函数的写法 立即执行函数通常有下面两种写法: //第一种写法 (func ...
- 【HDU6621】K-th Closest Distance【线段树】
题目大意:给你一堆数,每次询问区间[l,r]中离p第k小的|ai-p| 题解:考虑二分答案,对于每个可能的答案,我们只需要看在区间[l,r]里是否有≥k个比二分的答案还要接近于p的 考虑下标线段树,并 ...
- Linux操作系统之安全审计功能
内核编译时,一般打开NET选项就打开AUDIT选项了.在系统中查看audit是否打开,root 用户执行:service auditd status 我们知道在Linux系统中有大量的日志文件可以用于 ...
- (转)Windows下zookeeper安装及配置
转:https://blog.csdn.net/qq_36332827/article/details/79700239 zookeeper有单机.伪集群.集群三种部署方式,可根据自己对可靠性的需求选 ...
- 深入浅出HashMap
/** *@ author ViVi *@date 2014-6-11 */ Hashmap是一种非常常用的.应用广泛的数据类型,最近研究到相关的内容,就正好复习一下.希望通过仪器讨论.共同提高~ 1 ...
- 【excel】 超链接相关
如何导出超链接: 用visual basic处理 在excel中:Alt+F11 --> F7 --> 粘贴下面代码 -->F5(运行), 则会在原列接右侧出现超链 Sub Ext ...
- cita 源码研究
适用环境 vim + YouCompleteMe 使用 github 源,不能使用 ustc 源 git clone --depth 1 --recusive https://github.com/k ...
- 将本地图片数据制作成内存对象数据集|tensorflow|手写数字制作成内存对象数据集|tf队列|线程
样本说明: tensorflow经典实例之手写数字识别.MNIST数据集. 数据集dir名称 每个文件夹代表一个标签label,每个label中有820个手写数字的图片 标签label为0的文件夹 ...