2301: [HAOI2011]Problem b

Description

对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数。
 

Input

第一行一个整数n,接下来n行每行五个整数,分别表示a、b、c、d、k

Output

共n行,每行一个整数表示满足要求的数对(x,y)的个数

Sample Input

2
2 5 1 5 1
1 5 1 5 2
 
Sample Output
14
3
此题作为我的莫比乌斯反演的入门题
推荐文章 
    https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html      学习莫比乌斯反演
    https://wenku.baidu.com/view/fbe263d384254b35eefd34eb.html
       http://blog.csdn.net/outer_form/article/details/50590197
简单的说下莫比乌斯反演的作用
  对于一个函数f(n) 我们很难直接求出它的值,但是我可以求出倍数和或者约束和F(n),那么我们就可以将F通过莫比乌斯反演来得到f,基于容斥思想
  莫比乌斯反演常用于处理一些gcd的问题
代码如下:
#include <bits/stdc++.h>

using namespace std;
typedef long long ll;
typedef long long LL;
const int maxn = 5e4+;
int p[maxn],mo[maxn],phi[maxn],cnt,sum[maxn];
int a,b,c,d,k;
bool vis[maxn];
void init()
{
mo[]=;
phi[]=;
for(int i=;i<=maxn-;i++){
if(!vis[i]){
mo[i]=-;
phi[i]=i-;
p[cnt++]=i;
}
for(int j=;j<cnt&&(ll)i*p[j]<=maxn-;j++){
vis[i*p[j]]=true;
if(i%p[j]==){
mo[i*p[j]]=;
phi[i*p[j]]=phi[i]*p[j];
break;
}
mo[i*p[j]]=-mo[i];
phi[i*p[j]]=phi[i]*(p[j]-);
}
}
}
ll solve (int n,int m)
{
ll ret = ;
if (n>m) swap(n,m);
for (int i=,la=;i<=n;i=la+){
la = min(n/(n/i),m/(m/i));
ret+=(long long)(sum[la]-sum[i-])*(n/i)*(m/i);
}
return ret;
}
int main()
{
//freopen("de.txt","r",stdin);
init();
int T;
for (int i=;i<=;++i) sum[i] = sum[i-] + mo[i];
scanf("%d",&T);
while (T--){
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
ll ans = solve(b/k,d/k)-solve((a-)/k,d/k)-solve((c-)/k,b/k)+solve((a-)/k,(c-)/k);
printf("%lld\n",ans);
}
return ;
}
 

BZOJ 2301 莫比乌斯反演入门的更多相关文章

  1. bzoj 2301 莫比乌斯反演

    对于给出的n个询问,每次求有多少个数对(x,y),满足a≤x≤b,c≤y≤d,且gcd(x,y) = k,gcd(x,y)函数为x和y的最大公约数. 这里题目意思很明显 对于要求的f[n] = sig ...

  2. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  3. GCD HDU - 1695 莫比乌斯反演入门

    题目链接:https://cn.vjudge.net/problem/HDU-1695#author=541607120101 感觉讲的很好的一个博客:https://www.cnblogs.com/ ...

  4. 【题解】Crash的数字表格 BZOJ 2154 莫比乌斯反演

    题目传送门 http://www.lydsy.com/JudgeOnline/problem.php?id=2154 人生中第一道自己做出来的莫比乌斯反演 人生中第一篇用LaTeX写数学公式的博客 大 ...

  5. BZOJ 3309 莫比乌斯反演

    题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=3309 题意:定义f(n)为n所含质因子的最大幂指数,求 $Ans=\sum _{i=1} ...

  6. bzoj 2154 莫比乌斯反演求lcm的和

    题目大意: 表格中每一个位置(i,j)填的值是lcm(i,j) , 求n*m的表格值有多大 论文贾志鹏线性筛中过程讲的很好 最后的逆元我利用的是欧拉定理求解的 我这个最后线性扫了一遍,勉强过了,效率不 ...

  7. bzoj 1101 莫比乌斯反演

    最裸的莫比乌斯 #include<bits/stdc++.h> #define LL long long #define fi first #define se second #defin ...

  8. bzoj 2820 莫比乌斯反演

    搞了一整个晚自习,只是看懂了dalao们的博客,目前感觉没有思路-.还是要多切题 next day: 刚才又推了一遍,发现顺过来了,hahaha #include<cstdio> #inc ...

  9. HYSBZ - 2301 莫比乌斯反演

    链接 题解:直接用公式算,用容斥来减掉重复计算的部分 但是我犯了一个非常sb的错误,直接把abcd除k了,这样算a-1的时候就错了,然后举的例子刚好还没问题= = ,结果wa了好几发 //#pragm ...

随机推荐

  1. 2019牛客多校第六场 B - Shorten IPv6 Address 模拟

    B - Shorten IPv6 Address 题意 给你\(128\)位的二进制,转换为十六进制. 每\(4\)位十六进制分为\(1\)组,每两组用一个\(":"\)分开. 每 ...

  2. Delphi读取和写入utf-8编码格式的文件

    读取UTF-8格式的文件内容 function LoadUTF8File(AFileName: string): string; var ffileStream:TFileStream; fAnsiB ...

  3. java使用开源类库Tesseract实现图片识别

    Tesseract-OCR支持中文识别,并且开源和提供全套的训练工具,是快速低成本开发的首选. Tess4J则是Tesseract在Java PC上的应用 Tesseract的OCR引擎最先由HP实验 ...

  4. NOIP day1 玩具谜题

    逻辑有一些复杂,但是理解之后就很简单.题目描述中mogician什么的太暴力了...-1s 按照题目描述模拟,就能满分. /* Au: GG * CCF NOIP2016 day1 * toy */ ...

  5. python中遍历列表字典元组

    遍历列表,打印:我叫name,今年age岁,家住dizhi,电话phone lt = [ {'name':'小王', 'age':18, 'info':[('phone', '123'), ('diz ...

  6. 两个图层一上一下div view

    <view class="main"> <view class="user-info"> </view> <view ...

  7. 2019-05-16 Ubuntu使用

    Ubuntu的基本操作 查看操作系统版本 https://www.hostingadvice.com/how-to/ubuntu-show-version/ clu@sha01vmdev08:~/so ...

  8. STM32几个IO的工作模式

    浮空,顾名思义就是浮在空中,上面用绳子一拉就上去了,下面用绳子一拉就沉下去了.  开漏,就等于输出口接了个NPN三极管,并且只接了e,b. c极 是开路的,你可以接一个电阻到3.3V,也可以接一个电阻 ...

  9. SQL 交叉连接与内连接

    交叉连接 ,没有任何限制方式的连接. 叫做交叉连接. 碰到一种SQL 的写法. select * from  t1,t2 .     这其实是交叉连接 .   t1  是三条 ,  t2 是两条.  ...

  10. automate sap遇上的一些问题

    1. get column name of SAPGuiTable columnCount = SAPGuiSession("Session").SAPGuiWindow(&quo ...