给定一棵n个点的图上的最小生成树,让你把它补成完全图,使得新图的MST还是给定的MST且边权和最小,输出需要增加的边权和。

设size[i]表示以i号为祖先的并查集的大小。

首先按边权排序,之后在做MST的过程中,答案cnt+=(size[v]*size[u]-1)*(w+1),来解释一下这个式子,从v号集合到u号集合每两个点之间连一条边(除了MST上的这条边),因为MST必须还是原来的MST,所以边权要加1,之后将集合合并直到求出MST为止即可。

下面给出参考代码:

 #include<iostream>
#include<algorithm>
#include<cstring>
#define N 6005
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-;ch=getchar();}
return x*f;
}
int t,n,m,x,y,z,cnt,parent[N],size[N];
struct node
{
int u,v,w;
}f[N];
bool cmp(node a,node b)
{
return a.w<b.w;
}
int find(int x)
{
if(parent[x]==x)return x;
return parent[x]=find(parent[x]);
}
int main()
{
t=read();
while(t--)
{
cnt=;
n=read();
for(int i=;i<n;i++)
{
x=read();y=read();z=read();
f[i].u=x;f[i].v=y;f[i].w=z;
}
for(int i=;i<=n;i++)parent[i]=i,size[i]=;
sort(f+,f+n,cmp);
for(int i=;i<n;i++)
{
int u=find(f[i].u),v=find(f[i].v);
parent[u]=v;
cnt+=(size[u]*size[v]-)*(f[i].w+);
size[v]+=size[u];
}
cout<<cnt<<endl;
}
return ;
}

[暑假集训Day2T2]走廊泼水节的更多相关文章

  1. 2015UESTC 暑假集训总结

    day1: 考微观经济学去了…… day2: 一开始就看了看一道题目最短的B题,拍了半小时交了上去wa了 感觉自己一定是自己想错了,于是去拍大家都过的A题,十分钟拍完交上去就A了 然后B题写了一发暴力 ...

  2. CH6201 走廊泼水节【最小生成树】

    6201 走廊泼水节 0x60「图论」例题 描述 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 我 ...

  3. STL 入门 (17 暑假集训第一周)

    快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...

  4. [Tvvj1391]走廊泼水节(最小生成树)

    [Tvvj1391]走廊泼水节 Description 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 完全图:完 ...

  5. 「CH6201」走廊泼水节

    「CH6201」走廊泼水节 传送门 考虑 \(\text{Kruskal}\) 的过程以及用到一个最小生成树的性质即可. 在联通两个联通块时,我们肯定会选择最小的一条边来连接这两个联通块,那么这两个联 ...

  6. 暑假集训Day2 互不侵犯(状压dp)

    这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...

  7. 暑假集训Day1 整数划分

    题目大意: 如何把一个正整数N(N长度<20)划分为M(M>=1)个部分,使这M个部分的乘积最大.N.M从键盘输入,输出最大值及一种划分方式. 输入格式: 第一行一个正整数T(T<= ...

  8. 2013ACM暑假集训总结-致将走上大三征途的我

    回想起这个暑假,从开始与雄鹰一起的纠结要不要进集训队,与吉吉博博组队参加地大邀请赛,害怕进不了集训队.当时激励我月份开始接触的,记得当时在弄运动会来着,然后就问了雄鹰一些输入输出的东西,怀着满心的期待 ...

  9. [补档]暑假集训D5总结

    %dalao 今天又有dalao来讲课,讲的是网络流 网络流--从入门到放弃:7-29dalao讲课笔记--https://hzoi-mafia.github.io/2017/07/29/27/   ...

随机推荐

  1. smarty之缓存机制

    当smarty开启缓存时,当tpl文件内容改变时,则缓存页面会重新生成 test.php: <?php date_default_timezone_set('asia/shanghai'); h ...

  2. Mybatis中dao层实现

    在上一个笔记中继续: 因为要基于dao层,那么我们只需要又一个dao的接口,和一个mapper的文件就可以测试了. 但是基于dao层的时候需要规范: Mapper.xml文件中的namespace与m ...

  3. 【CF】38E Let's Go Rolling! (dp)

    前言 这题还是有点意思的. 题意: 给你 \(n\) (\(n<=3000\)) 个弹珠,它们位于数轴上.给你弹珠的坐标 \(x_i\) 在弹珠 \(i\) 上面花费 \(C_i\) 的钱 可以 ...

  4. 了解卷积神经网络如何使用TDA学习

    在我之前的文章中,我讨论了如何对卷积神经网络(CNN)学习的权重进行拓扑数据分析,以便深入了解正在学习的内容以及如何学习它. 这项工作的重要性可归纳如下: 它使我们能够了解神经网络如何执行分类任务. ...

  5. 031:verbatim 标签

    verbatim 标签: verbatim 标签:默认在 DTL 模板中是会去解析那些特殊字符的.比如 {% 和 %} 以及 {{ 等.如果你在某个代码片段中不想使用 DTL 的解析引擎.那么你可以把 ...

  6. 【leetcode】1026. Maximum Difference Between Node and Ancestor

    题目如下: Given the root of a binary tree, find the maximum value V for which there exists different nod ...

  7. SpringBoot整合MyBatis-Plus实现快速业务功能开发

    概览:使用MybatisPlus和它的代码生成整合SpringBoot可以实现快速的业务功能开发,具体步骤如下 一.添加依赖 <dependency> <groupId>org ...

  8. 重新定义数据库的时刻,阿里云数据库专家带你了解POLARDB

    摘要:POLARDB是阿里云ApsaraDB数据库团队研发的基于云计算架构的下一代关系型数据库,其最大的特色是计算节点与存储节点分离,借助优秀的RDMA网络以及最新的块存储技术.POLARDB不但满足 ...

  9. 批量搞机(一):ansible简介、ansible安装

    一.ansible简介 Ansible是2013年推出的一款IT自动化和DevOps软件,目前由Redhat已签署Ansible收购协议.其是基于Python研发,糅合了很多老运维工具的优点实现了批量 ...

  10. lightoj1094 - Farthest Nodes in a Tree

    1094 - Farthest Nodes in a Tree   PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limi ...