[暑假集训Day2T2]走廊泼水节
给定一棵n个点的图上的最小生成树,让你把它补成完全图,使得新图的MST还是给定的MST且边权和最小,输出需要增加的边权和。
设size[i]表示以i号为祖先的并查集的大小。
首先按边权排序,之后在做MST的过程中,答案cnt+=(size[v]*size[u]-1)*(w+1),来解释一下这个式子,从v号集合到u号集合每两个点之间连一条边(除了MST上的这条边),因为MST必须还是原来的MST,所以边权要加1,之后将集合合并直到求出MST为止即可。
下面给出参考代码:
#include<iostream>
#include<algorithm>
#include<cstring>
#define N 6005
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-;ch=getchar();}
return x*f;
}
int t,n,m,x,y,z,cnt,parent[N],size[N];
struct node
{
int u,v,w;
}f[N];
bool cmp(node a,node b)
{
return a.w<b.w;
}
int find(int x)
{
if(parent[x]==x)return x;
return parent[x]=find(parent[x]);
}
int main()
{
t=read();
while(t--)
{
cnt=;
n=read();
for(int i=;i<n;i++)
{
x=read();y=read();z=read();
f[i].u=x;f[i].v=y;f[i].w=z;
}
for(int i=;i<=n;i++)parent[i]=i,size[i]=;
sort(f+,f+n,cmp);
for(int i=;i<n;i++)
{
int u=find(f[i].u),v=find(f[i].v);
parent[u]=v;
cnt+=(size[u]*size[v]-)*(f[i].w+);
size[v]+=size[u];
}
cout<<cnt<<endl;
}
return ;
}
[暑假集训Day2T2]走廊泼水节的更多相关文章
- 2015UESTC 暑假集训总结
day1: 考微观经济学去了…… day2: 一开始就看了看一道题目最短的B题,拍了半小时交了上去wa了 感觉自己一定是自己想错了,于是去拍大家都过的A题,十分钟拍完交上去就A了 然后B题写了一发暴力 ...
- CH6201 走廊泼水节【最小生成树】
6201 走廊泼水节 0x60「图论」例题 描述 [简化版题意]给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 我 ...
- STL 入门 (17 暑假集训第一周)
快速全排列的函数 头文件<algorithm> next_permutation(a,a+n) ---------------------------------------------- ...
- [Tvvj1391]走廊泼水节(最小生成树)
[Tvvj1391]走廊泼水节 Description 给定一棵N个节点的树,要求增加若干条边,把这棵树扩充为完全图,并满足图的唯一最小生成树仍然是这棵树.求增加的边的权值总和最小是多少. 完全图:完 ...
- 「CH6201」走廊泼水节
「CH6201」走廊泼水节 传送门 考虑 \(\text{Kruskal}\) 的过程以及用到一个最小生成树的性质即可. 在联通两个联通块时,我们肯定会选择最小的一条边来连接这两个联通块,那么这两个联 ...
- 暑假集训Day2 互不侵犯(状压dp)
这又是个状压dp (大型自闭现场) 题目大意: 在N*N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. ...
- 暑假集训Day1 整数划分
题目大意: 如何把一个正整数N(N长度<20)划分为M(M>=1)个部分,使这M个部分的乘积最大.N.M从键盘输入,输出最大值及一种划分方式. 输入格式: 第一行一个正整数T(T<= ...
- 2013ACM暑假集训总结-致将走上大三征途的我
回想起这个暑假,从开始与雄鹰一起的纠结要不要进集训队,与吉吉博博组队参加地大邀请赛,害怕进不了集训队.当时激励我月份开始接触的,记得当时在弄运动会来着,然后就问了雄鹰一些输入输出的东西,怀着满心的期待 ...
- [补档]暑假集训D5总结
%dalao 今天又有dalao来讲课,讲的是网络流 网络流--从入门到放弃:7-29dalao讲课笔记--https://hzoi-mafia.github.io/2017/07/29/27/ ...
随机推荐
- Linux安装postgresql及基础操作
安装环境说明 系统环境说明 [root@slave1 ~]# cat /etc/redhat-release CentOS Linux release 7.4.1708 (Core) [root@sl ...
- JavaScript中的垃圾收集机制
JavaScript 具有自动垃圾收集机制,也就是说,执行环境会负责管理代码执行过程中使用的内存. 在编写 JavaScript 程序时,开发人员不用再关心内存使用问题,所需内存的分配以及无用内存的 ...
- python面向对象--item方法
class Foo: def __getitem__(self, item): print("getitem") return self.__dict__[item] def __ ...
- CSS3 多列布局——Columns
CSS3 多列布局——Columns 语法: columns:<column-width> || <column-count> 多列布局columns属性参数主要就两个属性参数 ...
- Redis安装配置以及开机启动
1.下载源码,解压缩后编译源码. $ wget http://download.redis.io/releases/redis-2.8.3.tar.gz $ .tar.gz $ cd redis- ...
- windows 使用 git 客户端
git客户端下载地址:https://www.git-scm.com/ tortoisegit下载地址:https://tortoisegit.org/ 双击下载的安装包,默认安装直到完成. 打开gi ...
- AOP 和 IOC
IOC : 控制反转(Inversion of Control,缩写为IoC),是面向对象编程中的一种设计原则,可以用来减低计算机代码之间的耦合度.其中最常见的方式叫做依赖注入(Dependency ...
- SpringBoot之Web进阶
.. 另外包括Springboot常用技术整合 以及项目上的应用
- Linux学习-基于CentOS7的MariaDB数据库的主从复制
一.MySQL主从复制原理 主从同步过程中主服务器有一个工作线程I/O dump thread,从服务器有两个工作线程I/O thread和SQL thread: 主服务器: dump Thread: ...
- myeclipce注册
今天提示MyEclipse Trial Expired,如何手动获取MyEclipse 注册码! 1.建立JAVA Project,随便命名,只要符合规则就行. 2.在刚刚建好的Project右击sr ...