UVa 1395 Slim Span【最小生成树】
题意:给出n个节点的图,求最大边减最小边尽量小的值的生成树
首先将边排序,然后枚举边的区间,判定在该区间内是否n个点连通,如果已经连通了,则构成一颗生成树,
则此时的苗条度是这个区间内最小的(和kruskal一样,如果在已经构成一颗树的基础上,再继续加入边,由于边都是排过序的,再加入的边一定会更大)
再维护一个最小值就好了
自己写的时候,枚举区间没有写对,然后判断1到n个点连通又写了一个for循环
后来看lrj的代码:发现是这样判断1到n是否连通的,每次枚举一个区间的时候,初始化cnt=n,当cnt=1时,说明已经加入了n-1条边,构成生成树了,那么此时已经连通
#include<iostream>
#include<cstdio>
#include<cstring>
#include <cmath>
#include<stack>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<algorithm>
#define mod=1e9+7;
using namespace std; typedef long long LL;
const int INF = 0x7fffffff;
const int maxn=;
int p[maxn]; struct edge{
int v,u,w;
bool operator <(const edge& rhs) const{
return w<rhs.w;}
}; int find(int x){return p[x]==x? x:p[x]=find(p[x]);} int main(){
int n,m,i,j,ans;
while(scanf("%d %d",&n,&m)!=EOF&&n){
vector<edge> e;
edge ee;
for(i=;i<m;i++){
scanf("%d %d %d",&ee.v,&ee.u,&ee.w);
e.push_back(ee);
} sort(e.begin(),e.end()); int l,r;
ans=INF;
for(l=;l<m;l++){
int cnt=n;
for(i=;i<=n;i++) p[i]=i;
for(r=l;r<m;r++){
int x=find(e[r].v);
int y=find(e[r].u);
if(x!=y) {
p[x]=y;
cnt--;
if(cnt==) {
ans=min(ans,e[r].w-e[l].w);
break;
}
}
}
} if(ans==INF) printf("-1\n");
else printf("%d\n",ans);
}
return ;
}
go---go---go--
UVa 1395 Slim Span【最小生成树】的更多相关文章
- UVA 1395 Slim Span 最小生成树
题意: 给你一个图,让你求这个图中所有生成树中满足题目条件的,这个条件是生成树中最长边与最短边的差值最小. 思路: 根据最小瓶颈生成树的定义:在一个有权值的无向图中,求一个生成树最大边的权值尽量小.首 ...
- UVA 1395 Slim Span (最小生成树,MST,kruscal)
题意:给一个图,找一棵生成树,其满足:最大权-最小权=最小.简单图,不一定连通,权值可能全相同. 思路:点数量不大.根据kruscal每次挑选的是最小权值的边,那么苗条度一定也是最小.但是生成树有多棵 ...
- UVa 1395 Slim Span (最小生成树)
题意:给定n个结点的图,求最大边的权值减去最小边的权值最小的生成树. 析:这个和最小生成树差不多,从小到大枚举左端点,对于每一个左端点,再枚举右端点,不断更新最小值.挺简单的一个题. #include ...
- UVa 1395 - Slim Span(最小生成树变形)
链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...
- UVA - 1395 Slim Span (最小生成树Kruskal)
Kruskal+并查集. 点很少,按边权值排序,枚举枚举L和R,并查集检查连通性.一旦连通,那么更新答案. 判断连通可以O(1),之前O(n)判的,第一次写的过了,后来T.. #include< ...
- UVa 1395 Slim Span
问题:给出一个n结点的图,求最大边与最小边差值最小的生成树 my code: #include <iostream> #include <cstdio> #include &l ...
- poj 3522 Slim Span (最小生成树kruskal)
http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submissions ...
- POJ 3522 Slim Span 最小生成树,暴力 难度:0
kruskal思想,排序后暴力枚举从任意边开始能够组成的最小生成树 #include <cstdio> #include <algorithm> using namespace ...
- uva1395 - Slim Span(最小生成树)
先判断是不是连通图,不是就输出-1. 否则,把边排序,从最小的边开始枚举最小生成树里的最短边,对每个最短边用Kruskal算法找出最大边. 或者也可以不先判断连通图,而是在枚举之后如果ans还是INF ...
随机推荐
- eclipse运行WordCount
1) 可以完全参考http://www.cnblogs.com/archimedes/p/4539751.html在eclipse下创建MapReduce工程,创建了MR工程,并完成WordCount ...
- JDK中常见的package
SUN公司在JDK中为程序开发者提供了各种实用类,这些类按功能不同分别被放入了不同的包中,供开发者使用,下面简要介绍其中最常用的几个包:1. java.lang — 包含一些Java语言的核心类,如S ...
- delphi的socket通讯 多个客户端 (转)
ClientSocket组件为客户端组件.它是通信的请求方,也就是说,它是主动地与服务器端建立连接. ServerSocket组件为服务器端组件.它是通信的响应方,也就是说,它的动作是监听以及被动接受 ...
- Difference Between Vector and Deque in C++
1) Dequeue can quickly insert or delete both at the front or the end. However, vector can only quick ...
- 关于yum仓库的中的软件包下载
在Linux系统下,很多软件的安装我们都会选择使用yum的方式安装,因为简单方便,易于管理. 有时我们可能会有这样的一个需求:即喜欢上yum仓库中的一个软件了,想要下载到本地.该怎么办呢? 实现方法不 ...
- C# 任意类型数据转JSON格式
/// <summary> /// List转成json /// </summary> /// <typeparam name="T">< ...
- lintcode:买卖股票的最佳时机 III
买卖股票的最佳时机 III 假设你有一个数组,它的第i个元素是一支给定的股票在第i天的价格.设计一个算法来找到最大的利润.你最多可以完成两笔交易. 样例 给出一个样例数组 [4,4,6,1,1,4,2 ...
- 搭建turnserver
参考文件: http://blog.csdn.net/kl222/article/details/20145423 为什么要搭建TURN服务器? 因为我们编写的sip客户端再和南瑞的sip服务器进行通 ...
- ios开发多线程--GCD
引言 虽然GCD使用很广,而且在面试时也经常问与GCD相关的问题,但是我相信深入理解关于GCD知识的人肯定不多,大部分都是人云亦云,只是使用过GCD完成一些很简单的功能.当然,使用GCD完成一些简单的 ...
- Java-对象数组排序
1.对对象数组排序:对象要提供一个compare方法比较对象的大小 2.代码 package Test; public class TestObjectArray { public static vo ...