题目链接:http://61.187.179.132/JudgeOnline/problem.php?id=2132

题意:n*m的格子染色黑白,对于格子(i,j)染黑色则价值为A[i][j],白色为B[i][j]。若一个格子四周不同颜色的有x个,则额外的价值为x*C[i][j]。求最大价值。

思路:将格子黑白染色分成两个集合X和Y。S集合为X中的A和Y中的B,T为X中的B和Y中的A。相邻的连边为两个格子的C值之和。总权值减去最小割即是答案。

struct node
{
    int v,cap,next;
};

node edges[N];
int head[N],e;

void add(int u,int v,int cap)
{
    edges[e].v=v;
    edges[e].cap=cap;
    edges[e].next=head[u];
    head[u]=e++;
}

void Add(int u,int v,int cap)
{
    add(u,v,cap);
    add(v,u,0);
}

int pre[N],cur[N],num[N],h[N];

int Maxflow(int s,int t,int n)
{
    int i;
    for(i=0;i<=n;i++) cur[i]=head[i],num[i]=h[i]=0;
    int u=s,Min,k,v;
    int ans=0;
    while(h[u]<n)
    {
        if(u==t)
        {
            Min=INF;
            for(i=s;i!=t;i=edges[cur[i]].v)
            {
                k=cur[i];
                if(edges[k].cap<Min) Min=edges[k].cap,v=i;
            }
            ans+=Min; u=v;
            for(i=s;i!=t;i=edges[cur[i]].v)
            {
                k=cur[i];
                edges[k].cap-=Min;
                edges[k^1].cap+=Min;
            }
        }
        for(i=cur[u];i!=-1;i=edges[i].next)
        {
            if(edges[i].cap>0&&h[u]==h[edges[i].v]+1) break;
        }
        if(i!=-1)
        {
            cur[u]=i;
            pre[edges[i].v]=u;
            u=edges[i].v;
        }
        else
        {
            if(--num[h[u]]==0) break;
            k=n;
            cur[u]=head[u];
            for(i=head[u];i!=-1;i=edges[i].next)
            {
                if(edges[i].cap>0&&h[edges[i].v]<k)
                {
                    k=h[edges[i].v];
                }
            }
            num[k+1]++;
            h[u]=k+1;
            if(u!=s) u=pre[u];
        }
    }
    return ans;
}

int n,m,a[105][105],b[105][105];
int dx[]={0,0,1,-1};
int dy[]={1,-1,0,0};

int main()
{
    RD(n,m);
    int i,j,k=0;
    FOR1(i,n) FOR1(j,m) a[i][j]=++k;
    clr(head,-1);
    int ans=0;
    int s=0,t=n*m+1;
    FOR1(i,n) FOR1(j,m)
    {
        RD(k);
        ans+=k;
        if((i+j)&1) Add(s,a[i][j],k);
        else Add(a[i][j],t,k);
    }
    FOR1(i,n) FOR1(j,m)
    {
        RD(k);
        ans+=k;
        if(!((i+j)&1)) Add(s,a[i][j],k);
        else Add(a[i][j],t,k);
    }
    FOR1(i,n) FOR1(j,m) RD(b[i][j]);
    int x,y;
    FOR1(i,n) FOR1(j,m) FOR0(k,4)
    {
        x=i+dx[k];
        y=j+dy[k];
        if(x>=1&&x<=n&&y>=1&&y<=m)
        {
            ans+=b[i][j];
            Add(a[i][j],a[x][y],b[i][j]+b[x][y]);
        }
    }
    ans-=Maxflow(s,t,t+1);
    PR(ans);
}

BZOJ 2132 圈地计划(最小割)的更多相关文章

  1. [BZOJ]2132: 圈地计划 最小割

    圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地.据了解,这块土地是一 ...

  2. BZOJ 2131 圈地计划(最小割+黑白染色)

    类似于happiness的一道题,容易想到最小割的做法. 但是不同的是那一道题是相邻的如果相同则有收益,这题是相邻的不同才有收益. 转化到建图上面时,会发现,两个相邻的点连的边容量会是负数.. 有一种 ...

  3. 【BZOJ2132】圈地计划 最小割

    [BZOJ2132]圈地计划 Description 最近房地产商GDOI(Group of Dumbbells Or Idiots)从NOI(Nuts Old Idiots)手中得到了一块开发土地. ...

  4. bzoj 2132 圈地计划(黑白染色,最小割)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2132 [题意] 给定n*m个区域,建工业区价值A,建商业区价值B,如果(i,j)有k个 ...

  5. bzoj 2132 圈地计划【最小割+dinic】

    对于网格图,尤其是这种要求相邻各自不同的,考虑黑白染色 对于这张染色后图来说: 对于每个黑格: 表示初始时选择商业区: s点向它连商业区收益的流量,它向t点连工业区收益的流量: 割断S侧的边说明反悔, ...

  6. bzoj 2132: 圈地计划

    #include<cstdio> #include<iostream> #include<cstring> #define M 100009 #define inf ...

  7. [BZOJ 3144] [Hnoi2013] 切糕 【最小割】

    题目链接:BZOJ - 3144 题目分析 题意:在 P * Q 的方格上填数字,可以填 [1, R] . 在 (x, y) 上填 z 会有 V[x][y][z] 的代价.限制:相邻两个格子填的数字的 ...

  8. [BZOJ 3894] 文理分科 【最小割】

    题目链接:BZOJ - 3894 题目分析 最小割模型,设定一个点与 S 相连表示选文,与 T 相连表示选理. 那么首先要加上所有可能获得的权值,然后减去最小割,即不能获得的权值. 那么对于每个点,从 ...

  9. BZOJ 2039 人员雇佣 二元关系 最小割

    题面太长了,请各位自行品尝—>人员雇佣 分析: 借用题解的描述: a.选择每个人有一个代价Ai b.如果有两个人同时选择就可以获得收益Ei,j c.如果一个人选择另一个不选会产生代价Ei,j 这 ...

随机推荐

  1. HOWTO Install the MinGW (GCC) Compiler Suite

    Posted July 25th, 2008 by mingwadmin getting started install mingw Automated Installer If you are ne ...

  2. Rsync详解

    Rsync详解 1.什么是RsyncRsync(remote synchronize)是一个远程数据同步工具,可通过LAN/WAN快速同步多台主机间的文件.Rsync使用所谓的“Rsync算法”来使本 ...

  3. python中遇到的各种问题

    一 编码问题 python的默认编码是ascii码,可以修改为utf-8 在python\Lib\site-packages\下添加一个文件sitecustomize.py 内容是 import sy ...

  4. jdk8飞行记录器配置

    jdk8提供了jmc工具,应该比visualvm厉害吧 下面贴一份tomcat的配置,自己留个备份,把下面的内容粘贴到tomcat setenv.sh就可以了 nowday=`date +%Y%m%d ...

  5. C# Driver LINQ Tutorial

    1.介绍 该教程涵盖了1.8版本的C#驱动中的LINQ查询.你可能已经阅读最新的C# Driver Tutorial. 2.快速开始 首先,给程序添加下面的using声明 using MongoDB. ...

  6. bin和sbin的区别

    bin和sbin的区别: bin:用户命令(所有用户均可使用) sbin:管理命令(通常只有管理员可以使用)

  7. ImageLoader 图片加裁

    // String picurl = article.cateLogo;// ImageLoader.getInstance().displayImage(picurl, holder.cate_Lo ...

  8. Python使用报错记录

    问题1:pip 报错 C:\Users\Administrator>pip3 install pyreadline Fatal error in launcher: Unable to crea ...

  9. css杂记

    1,font-variant: 设置文本是否为小型的大写字母,值可以为normal,small-caps; 2,a:link: 未访问过的 a:visited: 访问过的 a:active: 活动的链 ...

  10. HDU 3746:Cyclic Nacklace

    Cyclic Nacklace Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) ...