pytorch学习笔记(十二):详解 Module 类
Module 是 pytorch 提供的一个基类,每次我们要 搭建 自己的神经网络的时候都要继承这个类,继承这个类会使得我们 搭建网络的过程变得异常简单。
本文主要关注 Module 类的内部是怎么样的。
初始化方法中做了什么
def __init__(self):
self._backend = thnn_backend
self._parameters = OrderedDict()
self._buffers = OrderedDict()
self._backward_hooks = OrderedDict()
self._forward_hooks = OrderedDict()
self._forward_pre_hooks = OrderedDict()
self._modules = OrderedDict()
self.training = True
1
2
3
4
5
6
7
8
9
这是 Module 的初始化方法:
self._parameters 用来存放注册的 Parameter 对象
self._buffers 用来存放注册的 Buffer 对象。(pytorch 中 buffer 的概念就是 不需要反向传导更新的值)
self._modules 用来保存注册的 Module 对象。
self.training 标志位,用来表示是不是在 training 状态下
...hooks 用来保存 注册的 hook
__setattr__ 与 __getattr__
__setattr__ 每次给属性赋值的时候,都会调用这个方法。
__setattr__ 的代码比较多,我们一点一点看。
remove_from :工具函数, 用来从 self.__dict__, self._buffers, self._modules 中删除对象。
第一种情况: value 的类型是 Paramter
从 三大 字典中将 同名的 对象删掉
然后,注册 paramter
第二种情况: value不是 Parameter对象, name在 self._parameter 中
self._parameters[name] = None
已经考虑了 value 是 Parameter对象,剩下的就是考虑 value 为 buffer或 Module 了
第三种情况:value不是 Parameter对象, value 为 Module 对象
从三大字典里面移除同名 对象
然后直接向 self._modules 字典里添加 value
第四种情况:value不是Parameter对象, value不为 Module对象, 但是 name 在 self._modules 里
self._modules[name]=None
第五种情况:value不是Parameter对象, value不为 Module对象, name 存在 self._buffers 里
self._buffers[name]=None
最后一种情况: 就是 普通的属性了。
def __setattr__(self, name, value):
def remove_from(*dicts):
for d in dicts:
if name in d:
del d[name]
params = self.__dict__.get('_parameters')
if isinstance(value, Parameter):
if params is None:
raise AttributeError(
"cannot assign parameters before Module.__init__() call")
remove_from(self.__dict__, self._buffers, self._modules)
self.register_parameter(name, value)
elif params is not None and name in params:
if value is not None:
raise TypeError("cannot assign '{}' as parameter '{}' "
"(torch.nn.Parameter or None expected)"
.format(torch.typename(value), name))
self.register_parameter(name, value)
else:
modules = self.__dict__.get('_modules')
if isinstance(value, Module):
if modules is None:
raise AttributeError(
"cannot assign module before Module.__init__() call")
remove_from(self.__dict__, self._parameters, self._buffers)
modules[name] = value
elif modules is not None and name in modules:
if value is not None:
raise TypeError("cannot assign '{}' as child module '{}' "
"(torch.nn.Module or None expected)"
.format(torch.typename(value), name))
modules[name] = value
else:
buffers = self.__dict__.get('_buffers')
if buffers is not None and name in buffers:
if value is not None and not torch.is_tensor(value):
raise TypeError("cannot assign '{}' as buffer '{}' "
"(torch.Tensor or None expected)"
.format(torch.typename(value), name))
buffers[name] = value
else:
object.__setattr__(self, name, value)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
__getattr__ : 当获取 self.__dict__ 中没有的键所对应的值的时候,就会调用这个方法
因为 parameter, module, buffer 的键值对存在与 self._parameters, self._modules, self.buffer 中,所以,当想获取这些 值时, 就会调用这个方法。
def __getattr__(self, name):
if '_parameters' in self.__dict__:
_parameters = self.__dict__['_parameters']
if name in _parameters:
return _parameters[name]
if '_buffers' in self.__dict__:
_buffers = self.__dict__['_buffers']
if name in _buffers:
return _buffers[name]
if '_modules' in self.__dict__:
modules = self.__dict__['_modules']
if name in modules:
return modules[name]
raise AttributeError("'{}' object has no attribute '{}'".format(
type(self).__name__, name))
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
register_parameter
向模型中注册 Parameter
def register_parameter(self, name, param):
"""Adds a parameter to the module.
The parameter can be accessed as an attribute using given name.
"""
if '_parameters' not in self.__dict__:
raise AttributeError(
"cannot assign parameter before Module.__init__() call")
if param is None:
self._parameters[name] = None
elif not isinstance(param, Parameter):
raise TypeError("cannot assign '{}' object to parameter '{}' "
"(torch.nn.Parameter or None required)"
.format(torch.typename(param), name))
elif param.grad_fn:
raise ValueError(
"Cannot assign non-leaf Variable to parameter '{0}'. Model "
"parameters must be created explicitly. To express '{0}' "
"as a function of another variable, compute the value in "
"the forward() method.".format(name))
else:
self._parameters[name] = param
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
Module.training 标志 如何影响 前向过程
从nn.Dropout 来看 Module.training
class Dropout(Module):
def __init__(self, p=0.5, inplace=False):
super(Dropout, self).__init__()
if p < 0 or p > 1:
raise ValueError("dropout probability has to be between 0 and 1, "
"but got {}".format(p))
self.p = p
self.inplace = inplace
def forward(self, input):
return F.dropout(input, self.p, self.training, self.inplace)
1
2
3
4
5
6
7
8
9
10
11
可以看出,在forward 过程中,直接获取,父类的training的值。
我们 通常通过 module.train() 和 module.eval() 来切换模型的 训练测试阶段。
def train(self, mode=True):
"""Sets the module in training mode.
This has any effect only on modules such as Dropout or BatchNorm.
"""
self.training = mode
for module in self.children():
# 递归调用子模块 train 函数, 来设定所有 module 的 training 值。
module.train(mode)
return self
1
2
3
4
5
6
7
8
9
10
需要注意的是:module.eval() 仅仅设置 module 的 training 属性,如果我们想获得最快的推断速度, 还需要 设置 输入 Variable的volatile 属性为 True。
参考资料
https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/module.py
---------------------
作者:ke1th
来源:CSDN
原文:https://blog.csdn.net/u012436149/article/details/78281553
版权声明:本文为博主原创文章,转载请附上博文链接!
pytorch学习笔记(十二):详解 Module 类的更多相关文章
- expect学习笔记及实例详解【转】
1. expect是基于tcl演变而来的,所以很多语法和tcl类似,基本的语法如下所示:1.1 首行加上/usr/bin/expect1.2 spawn: 后面加上需要执行的shell命令,比如说sp ...
- python3.4学习笔记(十二) python正则表达式的使用,使用pyspider匹配输出带.html结尾的URL
python3.4学习笔记(十二) python正则表达式的使用,使用pyspider匹配输出带.html结尾的URL实战例子:使用pyspider匹配输出带.html结尾的URL:@config(a ...
- Go语言学习笔记十二: 范围(Range)
Go语言学习笔记十二: 范围(Range) rang这个关键字主要用来遍历数组,切片,通道或Map.在数组和切片中返回索引值,在Map中返回key. 这个特别像python的方式.不过写法上比较怪异使 ...
- Pytorch学习笔记(二)---- 神经网络搭建
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...
- java jvm学习笔记十二(访问控制器的栈校验机制)
欢迎装载请说明出处:http://blog.csdn.net/yfqnihao 本节源码:http://download.csdn.net/detail/yfqnihao/4863854 这一节,我们 ...
- 『PyTorch』第十二弹_nn.Module和nn.functional
大部分nn中的层class都有nn.function对应,其区别是: nn.Module实现的layer是由class Layer(nn.Module)定义的特殊类,会自动提取可学习参数nn.Para ...
- Docker技术入门与实战 第二版-学习笔记-3-Dockerfile 指令详解
前面已经讲解了FROM.RUN指令,还提及了COPY.ADD,接下来学习其他的指令 5.Dockerfile 指令详解 1> COPY 复制文件 格式: COPY <源路径> .. ...
- Redis学习笔记4-Redis配置详解
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件.采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务.按照本Redi ...
- (C/C++学习笔记) 十二. 指针
十二. 指针 ● 基本概念 位系统下为4字节(8位十六进制数),在64位系统下为8字节(16位十六进制数) 进制表示的, 内存地址不占用内存空间 指针本身是一种数据类型, 它可以指向int, char ...
随机推荐
- 虚拟机安装redis
sudo pecl install redis 先代码里先phpinfo(); 看看php版本 有可能是7.2 sudo vim /etc/php/7.1/fpm/php.ini (注意 php ...
- CommonJS、requirejs、ES6的对比
文件路径 首先先搞清楚文件路径的写法,这里我总是记不住,有点晕,正好这次整理一下. 以 / 为起始,表示从根目录开始解析: 以 ./ 为起始,表示从当前目录开始解析: 以 ../ 为起始,表示从上级目 ...
- Android——app基础
Android Application基础 系统启动过程 APK文件介绍 APK是Android Package的缩写,即android安装包.APK 文件其实是zip 格式,但后缀名被修改为apk ...
- python 切片索引
- 【机器学习PAI实战】—— 玩转人工智能之商品价格预测
摘要: 我们经常思考机器学习,深度学习,以至于人工智能给我们带来什么?在数据相对充足,足够真实的情况下,好的学习模型可以发现事件本身的内在规则,内在联系.我们去除冗余的信息,可以通过最少的特征构建最简 ...
- Significance A and B for protein ratios
实验设计中,一般会做三个生物学重复来确保结果的准确性,尤其在下游分析中.但有时会遇到没有生物学重复,而又需要进行差异分析的情况,这时一般建议考虑foldchange即可,因为根本无法进行T-test等 ...
- 下载安装APK(兼容Android7.0)
我们使用手机的时候经常会看到应用程序提示升级,大部分应用内部都需要实现升级提醒和应用程序文件(APK文件)下载. 一般写法都差不多,比如在启动app的时候,通过api接口获得服务器最新的版本号,然后和 ...
- JasperStudio study..
https://blog.csdn.net/shiyun123zw/article/details/79166448
- Directx11教程(49) stencil的应用-镜面反射
原文:Directx11教程(49) stencil的应用-镜面反射 本教程中,我们利用stencil来实现一个镜面反射效果. 1.首先我们要在D3DClass中增加几个成员变量及函数. I ...
- oracle怎么捕获表上的DML语句(不包括select)语句)
可以采用dml触发器,如 CREATE OR REPLACE TRIGGER tr_capt_sql BEFORE DELETE OR INSERT OR UPDATE ON manager.test ...