PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+;
Problem:
subsequence clustering.
Challenging:
discover patterns is challenging because it requires simultaneous segmentation and clustering of the time series + interpreting the cluster results is difficult.
Why discover time series patterns is a challenge?? thinking by yourself!! there are already so many distance measures(DTW, manifold distance) and clustering methods(knn,k-means etc.). But I admit the interpretation is difficult.
Introduction:
long time series ----breakdown-----> a sequence of states/patterns ------> so time series can be expressed as a sequential timeline of a few key states. -------> discover repeated patterns/ understand trends/ detect anomalies/ better interpret large and high-dimensional datasets.
Key steps: simultaneously segment and cluster the time series.
Unsupervised learning: hard to interpretation, after clustering, you have to view data itself.
how to discover interpretable structure in the data?
Traditional clustering methods are not particularly well-suited to discover interpretable structure in the data. This is because they typically rely on distance-based metrics
distance-based metrics, DTW.
距离式的算法,在处理multivariate time series上有劣势,看不到细微的数据结构相似性。
Propose a new method for multivariate time series clustering TICC:
- define each cluster as a dependency network showing the relationships between the different sensors in a short subsequence.
- each cluster is a markov random field.
- In thes MRFs, an edge represents a partial correlation between two variables.
- learn each cluster's MRF by estimating a sparse Gaussian inverse covariance matrix.
- This network has multiple layers.
- the number of layers corresponds to the window size of a short subsequence.
- 逆协方差矩阵定义了MRF dependency network 的adjaccency matrix.
Related work:
time series clustering and convex optimization;
variations of dtw; symbolic representations; rule-based motif discovery;
However, these methods generally rely on distance-based metrics.
TICC ------ a model-based clustering method, like ARMA, Gaussian mixture or hidden markov models.
- define each cluster by a Gaussian inverse covariance.
- so the Gaussian inverse covariance defines a Markov random field encoding the structural representation.
- K clusters/ inverse covariances.
selecting the number of clusters: cross-validation; mornalized mutual information; BIC or silhouette score.
看不懂哇 T T
Supplementary knowledge:
1. 对于unsupervised learning, 目前对结果的解释或者中间参数的选取,全是靠经验。
2. Aarhus data, Martin, 做多变量time series 预测。
3. Toeplitz Matrices: 常对角矩阵。
4. ticc code
Reference:
PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data的更多相关文章
- PP: Tripoles: A new class of relationships in time series data
Problem: ?? mining relationships in time series data; A new class of relationships in time series da ...
- 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)
图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/ka ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...
- PP: Unsupervised deep embedding for clustering analysis
Problem: unsupervised clustering represent data in feature space; learn a non-linear mapping from da ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
随机推荐
- uniapp-使用心得
<view class="cu-item flex-sub" :class="index==TabCur?'text-orange cur':''" v- ...
- Python中verbaim标签使用详解
verbatim标签:默认在"DTL"模板中是会去解析那些特殊字符串的,比如{% 和 %}以及{{等.如果你在某个代码片段中不想使用"DTL"的解析引擎,那么就 ...
- console 打印消息时,可以使用 %c 指定随后的文本样式; %s 可引用参数变量。
1.console.log 使用 加%c console.log('%c Merry Christmas!!', 'color:green;background:yellow;text-shadow: ...
- 【DTOJ】2703:两个数的余数和商
DTOJ 2703:两个数的余数和商 解题报告 2017.11.10 第一版 ——由翱翔的逗比w原创,引用<C++ Primer Plus(第6版)中文版> 题目信息: 题目描述 给你a ...
- 部署Nexus作为docker的私有仓库
目录 Docker搭建Nexus私有仓库... 1 一.安装部署... 1 1.安装... 2 2.访问网页端... 2 二.配置使用... 2 1.创建本地仓库... 2 2.docker配置... ...
- 使用INF创建CSR文件
公司要为一个英国的客户提供由HTTP升级到HTTPS的服务,于是接触到了申请SSL证书这方面的内容. 一.总的来说,申请证书需要两步,一是创建CSR文件,二是在证书提供商购买证书并将CSR文件发给证书 ...
- P4883 mzf的考验[平衡树]
P4883 mzf的考验 维护一种数据结构 支持区间翻转 区间异或 区间求和- 显然 fhq treap 区间异或显然是拆位 ~~然后复杂度*20~~ 第一次先遍历一下整棵树 pushup 一下 就可 ...
- nodejs events
EventEmitter类 events模块提供一个对象:events.EventEmitter,核心是事件触发和事件监听的封装. 大多数时候不会直接使用EventEmitter,而是在对象中继承它( ...
- Mac苹果电脑如何格式化?
一般而言,我们想要在Windows系统上实现格式化操作是非常容易的.然而在苹果电脑上,我们则需要通过launchpad下的磁盘工具来进行,相对而言比较麻烦.关于“苹果电脑怎么格式化”的问题也困扰着无数 ...
- Java代码中特殊注释
Java代码中特殊注释 TODO: + 说明:标识处有功能代码待编写,待实现的功能在说明中会简略说明. FIXME: + 说明:标识处代码需要修正,甚至代码是错误的,不能工作,需要修复,如何修正会在说 ...