From: Stanford University; Jure Leskovec, citation 6w+;

Problem:

subsequence clustering.

Challenging:

discover patterns is challenging because it requires simultaneous segmentation and clustering of the time series + interpreting the cluster results is difficult.

Why discover time series patterns is a challenge?? thinking by yourself!! there are already so many distance measures(DTW, manifold distance) and clustering methods(knn,k-means etc.). But I admit the interpretation is difficult.

Introduction:

long time series ----breakdown-----> a sequence of states/patterns ------> so time series can be expressed as a sequential timeline of a few key states. -------> discover repeated patterns/ understand trends/ detect anomalies/ better interpret large and high-dimensional datasets.

Key steps: simultaneously segment and cluster the time series.

Unsupervised learning: hard to interpretation, after clustering, you have to view data itself.

how to discover interpretable structure in the data?

Traditional clustering methods are not particularly well-suited to discover interpretable structure in the data. This is because they typically rely on distance-based metrics

distance-based metrics, DTW.

距离式的算法,在处理multivariate time series上有劣势,看不到细微的数据结构相似性。

Propose a new method for multivariate time series clustering TICC:

  • define each cluster as a dependency network showing the relationships between the different sensors in a short subsequence.
  • each cluster is a markov random field.
  • In thes MRFs, an edge represents a partial correlation between two variables.
  • learn each cluster's MRF by estimating a sparse Gaussian inverse covariance matrix.
  • This network has multiple layers.
  • the number of layers corresponds to the window size of a short subsequence.
  • 逆协方差矩阵定义了MRF dependency network 的adjaccency matrix.

Related work:

time series clustering and convex optimization;

variations of dtw; symbolic representations; rule-based motif discovery;

However, these methods generally rely on distance-based metrics.

TICC ------ a model-based clustering method, like ARMA, Gaussian mixture or hidden markov models.

  • define each cluster by a Gaussian inverse covariance.
  • so the Gaussian inverse covariance defines a Markov random field encoding the structural representation.
  • K clusters/ inverse covariances.

selecting the number of clusters: cross-validation; mornalized mutual information; BIC or silhouette score.

看不懂哇 T T

Supplementary knowledge:

1. 对于unsupervised learning, 目前对结果的解释或者中间参数的选取,全是靠经验。

2. Aarhus data, Martin, 做多变量time series 预测。

3. Toeplitz Matrices: 常对角矩阵。

4. ticc code

Reference:

1. 如何用简单易懂的例子解释条件随机场(CRF)模型?

PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data的更多相关文章

  1. PP: Tripoles: A new class of relationships in time series data

    Problem: ?? mining relationships in time series data; A new class of relationships in time series da ...

  2. 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)

    图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/ka ...

  3. PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network

    PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...

  4. PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval

    from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...

  5. PP: Unsupervised deep embedding for clustering analysis

    Problem: unsupervised clustering represent data in feature space; learn a non-linear mapping from da ...

  6. [转]Multivariate Time Series Forecasting with LSTMs in Keras

    1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...

  7. PP: A dual-stage attention-based recurrent neural network for time series prediction

    Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...

  8. PP: Deep clustering based on a mixture of autoencoders

    Problem: clustering A clustering network transforms the data into another space and then selects one ...

  9. PP: Time series clustering via community detection in Networks

    Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...

随机推荐

  1. Android布局管理器-使用FrameLayout帧布局管理器显示层叠的正方形以及前景照片

    场景 Android布局管理器-使用LinearLayout实现简单的登录窗口布局: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details ...

  2. 使用 setTimeout 来模拟一个 setInterval

    setTimeout 超时调用:在多少时间 在执行: setinterval 每隔多少时间 就调用 例如: setTimeout这个的值是1000,也就是说在页面刷新后,1000毫秒之后才调用这个函数 ...

  3. 经济学人精读笔记7:动乱当道,你还想买LV吗?

    2020/2/24 经济学人精读笔记7:动乱当道,你还想买LV吗? 标签(空格分隔): 经济学人 Part 1 Luxury goods A tale of two handbags Purveyor ...

  4. 【gRPC】如何便捷的调试gRPC程序

    前言 gRPC是一款广泛应用的rpc框架,因为基于C/S架构,服务启动之后,需要编写对应的客户端才能调用,调试起来相对麻烦一些,这里主要介绍一下如何通过swagger-ui来调试grpc服务. grp ...

  5. .net 父类值赋给子类

    1.最简单的方式,反射+泛型 优点:字段修改时,无需更改代码,只需要更新实体即可 缺点:因为用到反射,可能效率会稍微弱那么一点点,没有实际用太多字段测试 public static cClass Pa ...

  6. Fiddler: AutoResponder 构建模拟测试场景

    AutoResponder 可用于拦截某一请求,并重定向到本地的资源,或者使用Fiddler的内置响应.可用于调试服务器端代码而无需修改服务器端的代码和配置,因为拦截和重定向后,实际上访问的是本地的文 ...

  7. 安装canvas

    本方法仅适用用于window系统 安装canvas需要当前工作环境拥有python环境,且只能适用python2.7版本,v3.x.x版本会造成系统报错 1.在管理员权限下 使用choco insta ...

  8. bootstrap 兼容 IE8

    在 html 中引用 <!-- bootstrap 兼容 IE8 --> <script src="../../jsapi/js/html5shiv.min.js" ...

  9. Chrome 插件 postman 可以在线post

    地址:https://chrome.google.com/webstore/detail/fhbjgbiflinjbdggehcddcbncdddomop

  10. Node.js_1.1

    Node.js简介 Node.js是一个能够在服务器端运行JavaScript的开源代码.跨平台JavaScript运行环境 Node采用Google开发的V8引擎运行js代码,使用事件驱动.非阻塞和 ...