PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data
From: Stanford University; Jure Leskovec, citation 6w+;
Problem:
subsequence clustering.
Challenging:
discover patterns is challenging because it requires simultaneous segmentation and clustering of the time series + interpreting the cluster results is difficult.
Why discover time series patterns is a challenge?? thinking by yourself!! there are already so many distance measures(DTW, manifold distance) and clustering methods(knn,k-means etc.). But I admit the interpretation is difficult.
Introduction:
long time series ----breakdown-----> a sequence of states/patterns ------> so time series can be expressed as a sequential timeline of a few key states. -------> discover repeated patterns/ understand trends/ detect anomalies/ better interpret large and high-dimensional datasets.
Key steps: simultaneously segment and cluster the time series.
Unsupervised learning: hard to interpretation, after clustering, you have to view data itself.
how to discover interpretable structure in the data?
Traditional clustering methods are not particularly well-suited to discover interpretable structure in the data. This is because they typically rely on distance-based metrics
distance-based metrics, DTW.
距离式的算法,在处理multivariate time series上有劣势,看不到细微的数据结构相似性。
Propose a new method for multivariate time series clustering TICC:
- define each cluster as a dependency network showing the relationships between the different sensors in a short subsequence.
- each cluster is a markov random field.
- In thes MRFs, an edge represents a partial correlation between two variables.
- learn each cluster's MRF by estimating a sparse Gaussian inverse covariance matrix.
- This network has multiple layers.
- the number of layers corresponds to the window size of a short subsequence.
- 逆协方差矩阵定义了MRF dependency network 的adjaccency matrix.
Related work:
time series clustering and convex optimization;
variations of dtw; symbolic representations; rule-based motif discovery;
However, these methods generally rely on distance-based metrics.
TICC ------ a model-based clustering method, like ARMA, Gaussian mixture or hidden markov models.
- define each cluster by a Gaussian inverse covariance.
- so the Gaussian inverse covariance defines a Markov random field encoding the structural representation.
- K clusters/ inverse covariances.
selecting the number of clusters: cross-validation; mornalized mutual information; BIC or silhouette score.
看不懂哇 T T
Supplementary knowledge:
1. 对于unsupervised learning, 目前对结果的解释或者中间参数的选取,全是靠经验。
2. Aarhus data, Martin, 做多变量time series 预测。
3. Toeplitz Matrices: 常对角矩阵。
4. ticc code
Reference:
PP: Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data的更多相关文章
- PP: Tripoles: A new class of relationships in time series data
Problem: ?? mining relationships in time series data; A new class of relationships in time series da ...
- 图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix)
图Lasso求逆协方差矩阵(Graphical Lasso for inverse covariance matrix) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/ka ...
- PP: Robust Anomaly Detection for Multivariate Time Series through Stochastic Recurrent Neural Network
PROBLEM: OmniAnomaly multivariate time series anomaly detection + unsupervised 主体思想: input: multivar ...
- PP: Deep r -th Root of Rank Supervised Joint Binary Embedding for Multivariate Time Series Retrieval
from: Dacheng Tao 悉尼大学 PROBLEM: time series retrieval: given the current multivariate time series se ...
- PP: Unsupervised deep embedding for clustering analysis
Problem: unsupervised clustering represent data in feature space; learn a non-linear mapping from da ...
- [转]Multivariate Time Series Forecasting with LSTMs in Keras
1. Air Pollution Forecasting In this tutorial, we are going to use the Air Quality dataset. This is ...
- PP: A dual-stage attention-based recurrent neural network for time series prediction
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregr ...
- PP: Deep clustering based on a mixture of autoencoders
Problem: clustering A clustering network transforms the data into another space and then selects one ...
- PP: Time series clustering via community detection in Networks
Improvement can be done in fulture:1. the algorithm of constructing network from distance matrix. 2. ...
随机推荐
- hadoop之HDFS核心类Filesystem的使用
1.导入jar包,要使用hadoop的HDFS就要导入hadoop-2.7.7\share\hadoop\common下的3个jar包和lib下的依赖包.hadoop-2.7.7\share\hado ...
- RMAN中MAXSETSIZE和MAXPIECESIZE的用法
MAXSETSIZE跟MAXPIECESIZE用法 区别:maxpiecesize设置的是备份完成后的备份片大小,对备份整体的大小没有影响,比如一个G的备份完成文件,maxpiecesize设置为10 ...
- 小白的linux笔记5:关于权限那些事
在设置smb时发现,目录的权限是个影响访问的大问题,还是得研究清楚. 关于文件权限 查看当前目录下文件和文件夹的权限状态:ls -l drwxrwxr--. 4 root root 4096 ...
- 如何把已有的本地git仓库,推送到远程新的仓库(github private)并进行远程开发;
最近因为疫情,在家干活,连接不上之前的gitlab 服务器:所以不得把现有的代码迁移到github 的私有仓库来进行开发:下面简要记录迁移的过程: 首先,确保你已经配置好本地访问远程私有仓库的所有权限 ...
- mysql在node中的一些操作
mysql 服务: a) 安装wamp|xamp 开启 mysql服务 b) 安装mysql 开启服务 库操作: 客户端:软件操作(UI工具) wamp的客户端是phpmyadmin navicat ...
- javaSE学习笔记(15) ---缓冲流、转换流、序列化流
javaSE学习笔记(15) ---缓冲流.转换流.序列化流 缓冲流 昨天复习了基本的一些流,作为IO流的入门,今天我们要见识一些更强大的流.比如能够高效读写的缓冲流,能够转换编码的转换流,能够持久化 ...
- layui弹出表单提交后,界面model验证部分起作用
情况1----input属性中type=submit时验证都可以起作用,但是弹出层表单的返回值不能获取,所以用ajax二次提交后会出现重复添加数据的问题 情况2----input属性中type=but ...
- 一键安装最新内核并开启 BBR 脚本
最近,Google 开源了其 TCP BBR 拥塞控制算法,并提交到了 Linux 内核,从 4.9 开始,Linux 内核已经用上了该算法.根据以往的传统,Google 总是先在自家的生产环境上线运 ...
- Python 用户输入&while循环 初学者笔记
input() 获取用户输入(获取的都是字符串哦) //函数input()让程序停止运行,等待用户输入一些文本. //不同于C的是可在input中添加用户提示,而scanf不具备这一特性. //提示超 ...
- scp 后台执行(防止大文件关闭会话丢失)
Linux scp 设置nohup后台运行 Linux scp 设置nohup后台运行 1.正常执行scp命令 2.输入ctrl + z 暂停任务 3.bg将其放入后台 1.正常执行scp命令 从or ...