[HNOI2001] 求正整数 - 背包dp,数论
对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m。
Solution
(乍一看很简单却搞了好久?我真是太菜了)
根据因子个数计算公式
若 \(m = \prod p_i^{q_i}\), 则 \(n = \prod (q_i + 1)\)
设 \(f[i][j]\) 为只包含前 \(j\) 个质因数,因子个数为 \(i\) 的最小的数
转移类似背包: \(f[i][j]=min_{k|i} (f[i/k][j-1] \cdot p_j^{k-1})\)
这样直接做是 \(O(n \sqrt n \log n)\) ,考虑到需要枚举的 \(i\) 有且仅有 \(n\) 的因数,而约数个数的一个宽上界是 \(O(\sqrt n)\),复杂度就压缩到了 \(O(n \log n)\)
使用高精度直接 dp 可能会复杂度爆炸,所以我们对数一下
#include <bits/stdc++.h>
using namespace std;
struct Biguint {
int a[100005], len;
Biguint() {
memset(a, 0, sizeof a);
len = 0;
}
void read() {
string str;
cin >> str;
memset(a, 0, sizeof a);
len = str.length();
for (int i = 0; i < str.size(); i++)
a[i] = str[str.length() - i - 1] - '0';
}
void print() {
for (int i = len - 1; i >= 0; i--) {
cout << a[i];
}
}
bool operator < (const Biguint& obj) {
const int* b = obj.a;
if (this->len == obj.len) {
for (int i = len - 1; i>=0; --i)
if (a[i] != b[i]) return a[i] < b[i];
return false;
}
else return this->len < obj.len;
}
bool operator > (const Biguint& obj) {
const int* b = obj.a;
if (this->len == obj.len) {
for (int i = len - 1; i>=0; --i)
if (a[i] != b[i]) return a[i] > b[i];
return false;
}
else return this->len > obj.len;
}
bool operator != (const Biguint& obj) {
return (*this < obj) | (*this > obj);
}
bool operator == (const Biguint& obj) {
return !((*this < obj) | (*this > obj));
}
bool operator <= (const Biguint& obj) {
return (*this) < obj || (*this) == obj;
}
bool operator >= (const Biguint& obj) {
return (*this) > obj || (*this) == obj;
}
Biguint operator += (const Biguint& obj) {
const int* b = obj.a;
if (obj.len > len) len = obj.len;
for (int i = 0; i < len; i++) {
a[i] += b[i];
if (a[i] >= 10) a[i + 1] += a[i] / 10, a[i] %= 10;
}
if (a[len]) ++len;
while (a[len - 1] >= 10)
a[len] += a[len - 1] / 10, a[len - 1] %= 10, ++len;
return *this;
}
Biguint operator + (const Biguint& obj) {
Biguint ret;
ret += *this;
ret += obj;
return ret;
}
Biguint operator -= (const Biguint& obj) {
const int* b = obj.a;
for (int i = 0; i < len; i++) {
a[i] -= b[i];
if (a[i] < 0) a[i + 1]--, a[i] += 10;
}
while (a[len - 1] == 0 && len > 0) --len;
return *this;
}
Biguint operator -(const Biguint& obj) {
Biguint ret;
ret += *this;
ret -= obj;
return ret;
}
Biguint operator *= (int b) {
for (int i = 0; i < len; i++)
a[i] *= b;
for (int i = 0; i < len; i++)
a[i + 1] += a[i] / 10, a[i] %= 10;
++len;
while (a[len - 1] >= 10)
a[len] += a[len - 1] / 10, a[len - 1] %= 10, ++len;
while (a[len - 1] == 0 && len > 0) --len;
return *this;
}
Biguint operator * (int b) {
Biguint ret;
ret = *this;
ret *= b;
return ret;
}
Biguint operator * (const Biguint& obj) {
const int* b = obj.a;
Biguint ret;
for (int i = 0; i < len; i++)
for (int j = 0; j < obj.len; j++)
ret.a[i + j] += a[i] * b[j];
for (int i = 0; i < len + obj.len; i++)
ret.a[i + 1] += ret.a[i] / 10, ret.a[i] %= 10;
ret.len = len + obj.len;
++ret.len;
while (ret.a[ret.len - 1])
ret.a[ret.len] += ret.a[ret.len - 1] / 10, ret.a[ret.len - 1] %= 10, ++ret.len;
while (ret.a[ret.len - 1] == 0 && ret.len > 0) --ret.len;
return ret;
}
};
ostream& operator << (ostream& os, Biguint num)
{
for (int i = num.len - 1; i >= 0; --i)
os << num.a[i];
if (num.len == 0) os << "0";
return os;
}
istream& operator >> (istream& is, Biguint& num)
{
string str;
is >> str;
memset(num.a, 0, sizeof num.a);
num.len = str.length();
for (int i = 0; i < str.length(); i++)
num.a[i] = str[str.length() - i - 1] - '0';
return is;
}
const int N = 500005;
const int p[21] = {0, 2, 3, 5, 7, 11, 13, 17, 19, 23, 29,
31, 37, 41, 43, 47, 53, 59, 61, 67, 71};
int n,g[50005][21],h[50005][21],ii[50005],top;
double lp[21]={},f[50005][21];
signed main() {
ios::sync_with_stdio(false);
cin>>n;
for(int i=1;i<=n;i++) if(n%i==0) ii[++top]=i;
for(int i=1;i<=20;i++) lp[i]=log(p[i]);
for(int i=0;i<=50000;i++) for(int j=0;j<=20;j++) f[i][j]=1e9;
f[1][0]=1;
for(int _i=2;_i<=top;_i++) {
int i=ii[_i];
int sq=sqrt(i);
for(int j=1;j<=20;j++) {
for(int k=1;k<=sq;k++) {
if(i%k==0) {
if(f[i][j]>f[i/k][j-1]+(k-1)*lp[j]) {
f[i][j]=f[i/k][j-1]+(k-1)*lp[j];
g[i][j]=i/k;
h[i][j]=k-1;
}
}
}
for(int u=1;u<=sq;u++) {
int k=i/u;
if(i%k==0) {
if(f[i][j]>f[i/k][j-1]+(k-1)*lp[j]) {
f[i][j]=f[i/k][j-1]+(k-1)*lp[j];
g[i][j]=i/k;
h[i][j]=k-1;
}
}
}
}
}
int pos=n;
Biguint ans;
ans.len=1;
ans.a[0]=1;
for(int j=20;j;--j) {
int i=pos;
for(int k=1;k<=h[i][j];k++) ans*=p[j];
pos=g[i][j];
}
cout<<ans;
}
[HNOI2001] 求正整数 - 背包dp,数论的更多相关文章
- BZOJ 1225: [HNOI2001] 求正整数( dfs + 高精度 )
15 < log250000 < 16, 所以不会选超过16个质数, 然后暴力去跑dfs, 高精度计算最后答案.. ------------------------------------ ...
- 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数
// 高精度+搜索+质数 BZOJ1225 [HNOI2001] 求正整数 // 思路: // http://blog.csdn.net/huzecong/article/details/847868 ...
- bzoj1225 [HNOI2001] 求正整数
1225: [HNOI2001] 求正整数 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 762 Solved: 313[Submit][Statu ...
- luogu P1128 [HNOI2001]求正整数 dp 高精度
LINK:求正整数 比较难的高精度. 容易想到贪心不过这个贪心的策略大多都能找到反例. 考虑dp. f[i][j]表示前i个质数此时n的值为j的最小的答案. 利用高精度dp不太现实.就算上FFT也会T ...
- 【BZOJ】1225: [HNOI2001] 求正整数
http://www.lydsy.com/JudgeOnline/problem.php?id=1225 题意:给一个数n,求一个最小的有n个约数的正整数.(n<=50000) #include ...
- [HNOI2001]求正整数
题目描述 对于任意输入的正整数n,请编程求出具有n个不同因子的最小正整数m. 例如:n=4,则m=6,因为6有4个不同整数因子1,2,3,6:而且是最小的有4个因子的整数. 输入输出格式 输入格式: ...
- BZOJ 1225: [HNOI2001] 求正整数 高精度+搜索+质数
题意:给定n求,有n个因子的最小正整数. 题解:水题,zcr都会,我就不说什么了. 因数个数球求法应该知道,将m分解质因数,然后发现 a1^p1*a2^p2....an^pn这样一个式子, (1+p1 ...
- P1128 [HNOI2001]求正整数
传送门 rqy是我们的红太阳没有它我们就会死 可以考虑dp,设\(dp[i][j]\)表示只包含前\(j\)个质数的数中,因子个数为\(i\)的数的最小值是多少,那么有转移方程 \[f[i][j]=m ...
- BZOJ1222: [HNOI2001]产品加工(诡异背包dp)
Time Limit: 15 Sec Memory Limit: 162 MBSubmit: 907 Solved: 587[Submit][Status][Discuss] Descriptio ...
随机推荐
- Spring Boot 2从入门到放弃(持续更新)
入门 Spring Boot 2项目的搭建和启动(入门篇1) Spring Boot 2项目的搭建和启动(入门篇2) spring boot 2项目自定义父pom Spring Boot 2开发工具s ...
- mybatis postgresql 批量删除
一.需求介绍 前端是一个列表页面,列表可以进行复选框的选择,后台进行关联表数据的删除. 二.框架介绍 springboot+mybatis 数据库用的postgresql 三.具体代码(前端js) 1 ...
- 127.0.0.1 拒绝了我们的连接请求--访问本地IP时显示拒绝访问
问题描述 今天在访问http://127.0.0.1时,浏览器显示"127.0.0.1 拒绝了我们的连接请求",需要设置浏览器设置 解决方法 1.打开控制面板,搜索"程序 ...
- 5种PHP生成图片验证码实例
5种PHP生成图片验证码实例,包括数字验证码.数字+字母验证码.中文验证码.仿google验证码和算术验证码,PHP生成验证码的原理:通过GD库,生成一张带验证码的图片,并将验证码保存在Session ...
- 《自拍教程22》wget_文件下载工具
wget用途介绍 日常测试过程中,我们可以用wget命令,来下载一些资源文件. wget是一个很好文件下载命令, Linux操作系统下,自带wget命令. Windows操作系统下,需要自己去下载并配 ...
- JS事件绑定的三种方式比较
js事件 <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF- ...
- 字节、字符、位、bit、byte之间的关系
字节.字符.位.bit.byte之间的关系 1. 概要 位(bit):是计算机 内部数据 储存的最小单位,表示二进制位,11001100是一个八位二进制数. 电脑记忆体中最小的单位,在二进位电脑系统中 ...
- LeetCode 面试题 02.07. 链表相交
题目链接:https://leetcode-cn.com/problems/intersection-of-two-linked-lists-lcci/ 给定两个(单向)链表,判定它们是否相交并返回交 ...
- opencv —— addWeighted 图像叠加(计算数组加权和)
计算数组加权和:addWeighted 可实现两个大小.类型均相同的数组(一般为 Mat 类型)按照设定权重叠加在一起. void addWeighted(InputArray src1,double ...
- PyCharm2019 永久激活(测试通过)
2019.1.1 专业版 永久期限,需要下载补丁,以及配置文件 补丁地址:https://pan.baidu.com/s/16ALpz_BCXjsRkpS_PtD23A 1,下载安装pycharm程序 ...