题解 P3951 小凯的疑惑
数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq
分析
两数互质,且有无限个,想到不定方程ax+by=gcd(a,b)=1,并且是一定有解的
对于合法的数k,可以表示为 k=a×x1+b×y1(x1>=0,y1>=0)
找最大不合法的数,那么比它大的数(如k+1)一定是合法的,于是题目变成找最大的k使k-1不合法
由于本题中ax+by=1,对于不合法的数k-1,可以表示为
k-1=ax1+by1-(ax0+by0)=a(x1-x0)+b(y1-y0)
由ax0+by0=1,x0和y0必定不能同号
- 当 y0<0 ,有y1-y0>0 ,x0>0,只要x1-x0<0 则k-1不合法
- 当 x0<0 ,有x1-x0>0 ,y0>0,只要y1-y0<0 则k-1不合法
所以如果要k-1不合法,那么肯定所有x,y情况都不合法,即两式都要成立
所以对于1式,得x1<x0且x0>0,当x1<0自然无解,当x1>=0时,式1成立的条件是x1<所有非负x0,即x1<x'(x'是ax+by=1中x最小且非负的整数解),那么最大的整数x1=x0-1,同理y1=y''-1 (y'' 是ax+by=1中y最小且非负的整数解),使得两式都不合法, 而且k最大
ans=(x'-1)a+(y''-1)b-1
我们学到了什么
看范围 --1e9,互质等字眼,我们要用O(logn)的扩展欧几里得
转化问题 ——找最大的k使k-1不合法
式子标准化 ——将k-1用a(x1-x0)+b(y1-y0)的形式表示
探究不合法的条件 ——x1-x0<0,y1-y0'<0
贪心找最值 ——x1=x0-1,y1=y0-1
#include<cstdio>
using namespace std;
#define int long long
int a,b,x,y;
inline void exgcd(int a,int b,int &x,int &y) {
if (!b) x=1,y=0;
else exgcd(b,a%b,y,x),y-=a/b*x;
}
signed main() {
scanf("%lld%lld",&a,&b);
exgcd(a,b,x,y),x=(x+b)%b,y=(y+a)%a;
printf("%lld",(x-1)*a+(y-1)*b-1);
}
关于进一步的ab-a-b做法推荐这个博客
还有一种比较简单的理解方法:这个博客
题解 P3951 小凯的疑惑的更多相关文章
- 2017提高组D1T1 洛谷P3951 小凯的疑惑
洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...
- P3951 小凯的疑惑
P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) , b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...
- 洛谷 P3951 小凯的疑惑 找规律
目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...
- 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)
前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...
- 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)
2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...
- Luogu [P3951] 小凯的疑惑
题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...
- 洛谷 P3951 小凯的疑惑(数学)
传送门:Problem P3951 https://www.cnblogs.com/violet-acmer/p/9827010.html 参考资料: [1]:http://m.blog.sina.c ...
- 洛谷 P3951 小凯的疑惑
题目链接 一开始看到这题,我的内心是拒绝的. 以为是同余类bfs,一看数据1e9,发现只能允许O(1)的算法,数学还不太好,做不出来,其实应该打表找规律. 看到网上的题解,如果两个都必须拿,结果一定是 ...
- 洛谷P3951 小凯的疑惑 - 数学 /扩展欧几里得
传送门 题意:求出a和b不能通过线性组合(即n*a+m*b)得到的最大值: 思路:摘自洛谷: 不妨设 a<b 假设答案为 x 若 x≡m*a ( mod b )(1≤m≤b−1) (mod3)什 ...
随机推荐
- Java基于SSM在线学习系统设计与实现
Spring+SpringMVC+MyBatis+Bootstrap+Vue开发在线学习系统 本课题的主要内容是开发基于Java EE的在线学习平台,使用MVC经典开发模式. ...
- 深入理解IP之CIDR
现代IP基于分类的IP越来越少,而基于CIDR的方式的越来越多.那么可以看下面这篇文章: https://www.cnblogs.com/hark0623/p/6547432.html 这篇文章对CI ...
- 数据库SQL练习(一):数据查询
先创建以下3张基本表 1.学生信息表(Student): 2.课程表(Course): 3.成绩表(Score): 4. 将下列数据输入各个表中 建表SQL: CREATE DATABASE Stud ...
- mysql中获取本月第一天、本月最后一天、上月第一天、上月最后一天等等
转自: https://blog.csdn.net/min996358312/article/details/61420462 1.当函数使用时,即interval(),为比较函数,如:interva ...
- SpringMVC组件解析
SpringMVC组件解析 1. 前端控制器:DispatcherServlet 用户请求到达前端控制器,它就相当于 MVC 模式中的 C,DispatcherServlet 是整个流程控制的中心,由 ...
- linux安装php-laravel环境
1.运用传说中的宝塔面板安装(https://www.bt.cn/download/linux.html)网站地址 在xshell软件中安装一下命令 1.1 宝塔centos安装 wget -O in ...
- gflag的简单入门demo
gflags 一. 下载与安装 这里直接使用包管理器安装: sudo apt install libgflags-dev 二. gflags的简单使用 1. 定义需要的类型 格式: DEFINE_类型 ...
- Python3标准库:difflib差异计算工具
1. difflib差异计算工具 此模块提供用于比较序列的类和函数. 例如,它可以用于比较文件,并可以产生各种格式的不同信息,包括HTML和上下文以及统一格式的差异点.有关目录和文件的比较,请参见fi ...
- scrapy爬虫保存数据
1.数据保存为TXT 打开Pipeline.py import codecs import os import json import pymysql class CoolscrapyPipeline ...
- react 和 vue 的优缺点总结
React推广了Virtual DOM并创造了新的语法——JSX,JSX允许开发者在JavaScript中书写HTML Vue使用模板系统而不是JSX,但能对现有应用的升级更加容易,这是因为模板用的就 ...