P3951 小凯的疑惑

数论极菜的小萌新我刚看这题时看不懂exgcd做法的题解,后来在网上找到了一篇博客,感觉代码和推导都更加清新易懂,于是在它的基础上写了题解qwq

分析

两数互质,且有无限个,想到不定方程ax+by=gcd(a,b)=1,并且是一定有解的

对于合法的数k,可以表示为 k=a×x1+b×y1(x1>=0,y1>=0)

找最大不合法的数,那么比它大的数(如k+1)一定是合法的,于是题目变成找最大的k使k-1不合法

由于本题中ax+by=1,对于不合法的数k-1,可以表示为

k-1=ax1+by1-(ax0+by0)=a(x1-x0)+b(y1-y0)

由ax0+by0=1,x0和y0必定不能同号

  1. 当 y0<0 ,有y1-y0>0 ,x0>0,只要x1-x0<0 则k-1不合法
  2. 当 x0<0 ,有x1-x0>0 ,y0>0,只要y1-y0<0 则k-1不合法

所以如果要k-1不合法,那么肯定所有x,y情况都不合法,即两式都要成立

所以对于1式,得x1<x0且x0>0,当x1<0自然无解,当x1>=0时,式1成立的条件是x1<所有非负x0,即x1<x'(x'是ax+by=1中x最小且非负的整数解),那么最大的整数x1=x0-1,同理y1=y''-1 (y'' 是ax+by=1中y最小且非负的整数解),使得两式都不合法, 而且k最大

ans=(x'-1)a+(y''-1)b-1


我们学到了什么

  1. 看范围  --1e9,互质等字眼,我们要用O(logn)的扩展欧几里得

  2. 转化问题  ——找最大的k使k-1不合法

  3. 式子标准化 ——将k-1用a(x1-x0)+b(y1-y0)的形式表示

  4. 探究不合法的条件  ——x1-x0<0,y1-y0'<0

  5. 贪心找最值  ——x1=x0-1,y1=y0-1

#include<cstdio>
using namespace std;
#define int long long
int a,b,x,y;
inline void exgcd(int a,int b,int &x,int &y) {
if (!b) x=1,y=0;
else exgcd(b,a%b,y,x),y-=a/b*x;
}
signed main() {
scanf("%lld%lld",&a,&b);
exgcd(a,b,x,y),x=(x+b)%b,y=(y+a)%a;
printf("%lld",(x-1)*a+(y-1)*b-1);
}

关于进一步的ab-a-b做法推荐这个博客

还有一种比较简单的理解方法:这个博客

题解 P3951 小凯的疑惑的更多相关文章

  1. 2017提高组D1T1 洛谷P3951 小凯的疑惑

    洛谷P3951 小凯的疑惑 原题 题目描述 小凯手中有两种面值的金币,两种面值均为正整数且彼此互素.每种金币小凯都有 无数个.在不找零的情况下,仅凭这两种金币,有些物品他是无法准确支付的.现在小 凯想 ...

  2. P3951 小凯的疑惑

    P3951 小凯的疑惑 题解 题意也就是求解不能用 ax+by 表示的最大数 ans(a,b,x,y,都是正整数) 给定 a ( =7 ) ,  b ( =3 ) 我们可以把数轴非负半轴上的数按照a的 ...

  3. 洛谷 P3951 小凯的疑惑 找规律

    目录 题面 题目链接 题目描述 输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例: 输出样例: 说明 思路 证明 AC代码 include<bits/stdc++.h> 题面 ...

  4. 联赛膜你测试20 T1 Simple 题解 && NOIP2017 小凯的疑惑 题解(赛瓦维斯特定理)

    前言: 数学题,对于我这种菜B还是需要多磨啊 Simple 首先它问不是好数的数量,可以转化为用总数量减去是好数的数量. 求"好数"的数量: 由裴蜀定理得,如果某个数\(i\)不能 ...

  5. 2021.07.20 P3951 小凯的疑惑(最大公因数,未证)

    2021.07.20 P3951 小凯的疑惑(最大公因数,未证) 重点: 1.最大公因数 题意: 求ax+by最大的表示不了的数(a,b给定 x,y非负). 分析: 不会.--2021.07.20 代 ...

  6. Luogu [P3951] 小凯的疑惑

    题目详见:[P3951]小凯的疑惑 首先说明:此题为一道提高组的题.但其实代码并没有提高组的水平.主要考的是我们的推断能力,以及看到题后的分析能力. 分析如下: 证明当k>ab-a-b时,小凯可 ...

  7. 洛谷 P3951 小凯的疑惑(数学)

    传送门:Problem P3951 https://www.cnblogs.com/violet-acmer/p/9827010.html 参考资料: [1]:http://m.blog.sina.c ...

  8. 洛谷 P3951 小凯的疑惑

    题目链接 一开始看到这题,我的内心是拒绝的. 以为是同余类bfs,一看数据1e9,发现只能允许O(1)的算法,数学还不太好,做不出来,其实应该打表找规律. 看到网上的题解,如果两个都必须拿,结果一定是 ...

  9. 洛谷P3951 小凯的疑惑 - 数学 /扩展欧几里得

    传送门 题意:求出a和b不能通过线性组合(即n*a+m*b)得到的最大值: 思路:摘自洛谷: 不妨设 a<b 假设答案为 x 若 x≡m*a ( mod b )(1≤m≤b−1) (mod3)什 ...

随机推荐

  1. 1级搭建类113-Oracle 11gR2 SI FS(OEL 6.10)

    Oracle 11g 单实例文件系统搭建(EMDC) EMDC:Database Control 单实例主机.数据库等监控,这东西12c之后没有了 EMGC:Grid Control 单独安装GC软件 ...

  2. [SNOI2017]炸弹[线段树优化建图]

    [SNOI2017]炸弹 线段树优化建图,然后跑一边tarjan把点全部缩起来,炸一次肯定是有连锁反应的所以整个连通块都一样-于是就可以发现有些是只有单向边的不能忘记更新,没了. #include & ...

  3. MySQL的DQL语言(查)

    MySQL的DQL语言(查) DQL:Data Query Language,数据查询语言. DQL是数据库中最核心的语言,简单查询,复杂查询,都可以做,用select语句. 1. 查询指定表的全部字 ...

  4. c++中sort基础用法

    用法一:数组排序 对一个数组进行升序排序 #include <algorithm> #include <iostream> #include <cstdio> us ...

  5. RYU安装教程

    一.使用pip的形式安装RYU 1.首先检查ubuntu中是否存在pip,命令为 sudo pip3 --version 2.如果存在则使用默认版本8.1.1就行不必跟新,否则自己下载一个pip 3. ...

  6. 【转载】深入理解Java虚拟机笔记---运行时栈帧结构

    栈帧(Stack Frame)是用于支持虚拟机进行方法调用和方法执行的数据结构,它是虚拟机运行时数据区的虚拟机栈(Virtual Machine Stack)的栈元素.栈帧存储了方法的局部变量表,操作 ...

  7. 机器学习作业(五)机器学习算法的选择与优化——Matlab实现

    题目下载[传送门] 第1步:读取数据文件,并可视化: % Load from ex5data1: % You will have X, y, Xval, yval, Xtest, ytest in y ...

  8. Vue.js 源码目录设计(二)

    Vue.js 的源码都在 src 目录下,其目录结构如下. src ├── compiler # 编译相关 ├── core # 核心代码 ├── platforms # 不同平台的支持 ├── se ...

  9. Eclipse项目工程导入到IDEA继续开发-超详细

    现在Java开发的主流工具是IDEA,不是说Eclipse,各有各的特色.不过我现在深深的爱上了idea这个工具. 但是之前很多项目都是用eclipse开发的,现在就转入到idea中进行继续开发. 1 ...

  10. springboot整合websocket实现客户端与服务端通信

    定义  WebSocket是通过单个TCP连接提供全双工(双向通信)通信信道的计算机通信协议.此WebSocket API可在用户的浏览器和服务器之间进行双向通信.用户可以向服务器发送消息并接收事件驱 ...