「UVA12004」 Bubble Sort 解题报告
UVA12004 Bubble Sort
Check the following code which counts the number of swaps of bubble sort.
int findSwaps( int n, int a[] )
{
int count = 0, i, j, temp, b[100000];
for( i = 0; i < n; i++ ) {
b[i] = a[i];
}
for( i = 0; i < n; i++ ) {
for( j = 0; j < n - 1; j++ ) {
if( b[j] > b[j+1] ) {
temp = b[j];
b[j] = b[j+1];
b[j+1] = temp;
count++;
}
}
}
return count;
}
You have to find the average value of ’count’ in the given code if we run findSwaps() infinitely many times using constant ’n’ and each time some random integers (from 1 to n) are given in array a[]. You can assume that the input integers in array a[] are distinct.
Input
Input starts with an integer T (≤ 1000), denoting the number of test cases. Each test case contains an integer n (1 ≤ n ≤ 105) in a single line.
Output
For each case, print the case number and the desired result. If the result is an integer, print it. Otherwise print it in ‘p/q’ form, where p and q are relative prime.
Sample Input
2
1
2
Sample Output
Case 1: 0
Case 2: 1/2
思路
一句话题意:求长度为n的排列的期望逆序对数。
很简单,\(f(n)=f(n-1)+\frac{n-1}2=\frac{n\times(n-1)}4,f(1)=0\)。
为什么呢?假设把\(n\)插入长度\((n-1)\)的排列,有\(n\)种方法。期望增加的逆序对数就是\(\frac{1+2+...n-1}n=\frac{n\times (n-1)}{2n}=\frac{n-1}2\)
所以\(f(n)=f(n-1)+\frac{n-1}2\)
很简单吧?别忘了开long long
代码
#include<bits/stdc++.h>
using namespace std;
#define LL long long
int T, i;
LL n;
int main(){
scanf( "%d", &T );
for ( int i = 1; i <= T; ++i ){
scanf( "%lld", &n );
n = n * ( n - 1 ) / 2;
if ( n & 1 ) printf( "Case %d: %lld/2\n", i, n );
else printf( "Case %d: %lld\n", i, n / 2 );
}
return 0;
}
「UVA12004」 Bubble Sort 解题报告的更多相关文章
- 「SP25784」BUBBLESORT - Bubble Sort 解题报告
SP25784 BUBBLESORT - Bubble Sort 题目描述 One of the simplest sorting algorithms, the Bubble Sort, can b ...
- 「ZJOI2016」大森林 解题报告
「ZJOI2016」大森林 神仙题... 很显然线段树搞不了 考虑离线操作 我们只搞一颗树,从位置1一直往后移动,然后维护它的形态试试 显然操作0,1都可以拆成差分的形式,就是加入和删除 因为保证了操 ...
- 「SCOI2016」背单词 解题报告
「SCOI2016」背单词 出题人sb 题意有毒 大概是告诉你,你给一堆n个单词安排顺序 如果当前位置为x 当前单词的后缀没在这堆单词出现过,代价x 这里的后缀是原意,但不算自己,举个例子比如abc的 ...
- 「NOI2015」寿司晚宴 解题报告
「NOI2015」寿司晚宴 这个题思路其实挺自然的,但是我太傻了...最开始想着钦定一些,结果发现假了.. 首先一个比较套路的事情是状压前8个质数,后面的只会在一个数出现一次的再想办法就好. 然后发现 ...
- 「SCOI2015」国旗计划 解题报告
「SCOI2015」国旗计划 蛮有趣的一个题 注意到区间互不交错,那么如果我们已经钦定了一个区间,它选择的下一个区间是唯一的,就是和它有交且右端点在最右边的,这个可以单调队列预处理一下 然后往后面跳拿 ...
- 「SDOI2014」向量集 解题报告
「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...
- 「FJOI2016」神秘数 解题报告
「FJOI2016」神秘数 这题不sb,我挺sb的... 我连不带区间的都不会哇 考虑给你一个整数集,如何求这个神秘数 这有点像一个01背包,复杂度和值域有关.但是你发现01背包可以求出更多的东西,就 ...
- 「JLOI2015」骗我呢 解题报告?
「JLOI2015」骗我呢 这什么神仙题 \[\color{purple}{Link}\] 可以学到的东西 对越过直线的东西翻折进行容斥 之类的..吧? Code: #include <cstd ...
- 「JLOI2015」城池攻占 解题报告
「JLOI2015」城池攻占 注意到任意两个人的战斗力相对大小的不变的 可以离线的把所有人赛到初始点的堆里 然后做启发式合并就可以了 Code: #include <cstdio> #in ...
随机推荐
- HZOJ 数颜色
一眼看去树套树啊,我可能是数据结构学傻了…… 是应该去学一下莫队进阶的东西了. 上面那个东西我没有打,所以这里没有代码,而且应该也不难理解吧. 这么多平衡树就算了,不过线段树还是挺好打的. 正解3: ...
- HZOJ 匹配
Hash/KMP裸题,并不想写什么,只是复习一下KMP吧. void get_n() { next[]=; ; ;i<=lt;i++) { && t[i]!=t[j+])j=ne ...
- @topcoder - SRM577D1L3@ XorAndSum
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给出 N 个数,每次操作可以任意选择两个数,将其中一个替换为两个 ...
- Node.js 安装及环境配置 以及google浏览器安装插件并使用
一.安装环境 1.本机系统:Windows 10 企业版(64位)2.Node.js:node-v10.16.0-x64.msi(64位) 二.安装Node.js步骤 1.下载对应自己系统对应的 No ...
- JPA 一对多双向映射 结果对象相互迭代 造成堆栈溢出问题方法
问题: JPA 在双向映射时,会相互包含对方的实例,相互引用,造成递归迭代,堆栈溢出(java.lang.StackOverflowError). 分析: 在后端向前端传递的时候会将数据序列化,转为j ...
- win10 uwp 在 Canvas 放一个超过大小的元素会不会被裁剪
我尝试在一个宽度200高度200的 Canvas 放了一个宽度 300 高度 300 的元素,这个元素会不会被 Canvas 裁剪了? 经过我的测试,发现默认是不会被裁剪 火火问了我一个问题,如果有一 ...
- [转]ECMAScript 2016,2017 和 2018 中所有新功能的示例
很难追踪 JavaScript(ECMAScript)中的新功能. 想找到有用的代码示例更加困难. 因此,在本文中,我将介绍 TC39 已完成 ES2016,ES2017 和 ES2018(最终草案) ...
- 再一次利用with as 优化SQL
上海的一个哥们问我有个SQL跑了4个小时都没跑完,实在受不了了,找我优化一下.我确实挺佩服他的,要是我遇到跑了几分钟的,就受不了了. SQL语句和执行计划如下: --sql id:1qbbw3th4x ...
- el-table翻页序号不从1开始(已解决)
法一:赋值方式(亲测有效) <el-table-column type="index" fixed="left" align="center&q ...
- Redux 认识之后进阶
两个东西 action 状态 路由 以及嵌套路由 完整结构 进阶+源代码 源代码在我的 gitHub 存储库里面 https://github.com/Haisenan/Redux2.0