题解【洛谷P1725】琪露诺
典型的单调队列优化\(\text{DP}\)题。
不难想到设\(dp_i\)表示以\(i\)结尾能得到的最大冰冻指数。
这样设的转移方程也很简单:\(dp_i=\max\left\{ dp_j+a_i \right\} (i − r ≤ j ≤ i − l)\)。
然而这样做的时间复杂度是\(\Theta(n^2)\)的,只有\(60\)分。
考虑如何优化。
我们可以利用单调队列这一个数据结构来维护\(dp_j\)的最大值。
此时的决策点就是队首点。
这就是单调队列优化\(\text{DP}\)。
#include <bits/stdc++.h>
#define itn int
#define gI gi
using namespace std;
inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
}
const int maxn = 200003;
int n, m, l, r, a[maxn], q[maxn], p[maxn], head = 1, tail, dp[maxn];
int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi(), l = gi(), r = gi();
for (int i = 0; i <= n; i+=1) a[i] = gi(); //注意从0开始
memset(dp, 0xcf, sizeof(dp)); //设为无穷小值
int ans = dp[0], now = 0; //答案和当前进入队列的编号
dp[0] = 0;
for (int i = l; i <= n; i+=1) //注意从l开始循环
{
while (head <= tail && dp[q[tail]] <= dp[now]) --tail; //单调队列中的队尾出队
q[++tail] = now; //将这个点加入队列
while (q[head] < i - r) ++head; //判断不合法的区间
dp[i] = dp[q[head]] + a[i]; //状态转移
++now; //注意增加进入队列的编号
}
for (int i = n - r + 1; i <= n; i+=1) ans = max(ans, dp[i]); //答案取max
printf("%d\n", ans);
return 0;
}
题解【洛谷P1725】琪露诺的更多相关文章
- 洛谷 P1725 琪露诺 题解
P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是 ...
- 洛谷P1725琪露诺(单调队列优化dp)
P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪 ...
- 洛谷P1725 琪露诺
传送门啦 本人第一个单调队列优化 $ dp $,不鼓励鼓励? 琪露诺这个题,$ dp $ 还是挺好想的对不,但是暴力 $ dp $ 的话会 $ TLE $ ,所以我们考虑用单调队列优化. 原题中说她只 ...
- 洛谷—— P1725 琪露诺
https://www.luogu.org/problem/show?pid=1725 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这 ...
- 洛谷P1725 琪露诺 (单调队列/堆优化DP)
显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...
- [洛谷P3693]琪露诺的冰雪小屋
题目大意:琪露诺的冰雪小屋,我做的第一道大模拟题. 题解:模拟... 卡点:无数小错误,要是没有写一点调一点,那大概是永远调不出来了... C++ Code: #include <cstdio& ...
- 【洛谷】【动态规划+单调队列】P1725 琪露诺
[题目描述:] 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪露诺决定到河 ...
- P1725 琪露诺
P1725 琪露诺 单调队列优化dp 对于不是常数转移的dp转移,我们都可以考虑单调队列转移 然而我们要把数组开大 #include<cstdio> #include<algorit ...
- luogu P1725 琪露诺
二次联通门 : luogu P1725 琪露诺 /* luogu P1725 琪露诺 DP + 线段树 用线段树维护dp[i - R] ~ dp[i - L]的最大值 然后 转移方程是 dp[i] = ...
- P1725 琪露诺 题解(单调队列)
题目链接 琪露诺 解题思路 单调队列优化的\(dp\). 状态转移方程:\(f[i]=max{f[i-l],f[i-l+1],...,f[i-r-1],f[i-r]}+a[i]\) 考虑单调队列优化. ...
随机推荐
- nodejs 使用 body-parser 获取网页内容
var bodyParser = require('body-parser'); var urlencodedParser = bodyParser.urlencoded({ extended: fa ...
- Vue与原生APP的相互交互
现在好多APP都采用了Hybrid的开发模式,这种模式特别适合那些内容变动更新较大的APP,从而使得开发和日常维护过程变得集中式.更简短.更经济高效,不需要纯原生频繁发布.但有利肯定有弊咯,性能方面能 ...
- PHP0009:PHP基础-mysql
以管理员省份启动记事本 修改host文件 插入外部sql数据
- Console对象与错误处理机制
console的常见用途有两个. 调试程序,显示网页代码运行时的错误信息. 提供了一个命令行接口,用来与网页代码互动. console对象的浏览器实现,包含在浏览器自带的开发工具之中.按 F12 打开 ...
- 复习mongoose的基本使用
mongodb参考 mongoose官网 mongoose用起来更便捷,更方便些
- ImportError: libzmq.so.5 报错
https://pkgs.org/download/libzmq.so.5()(64bit) # rpm -ivh zeromq-4.1.4-6.el7.x86_64.rpm
- LeetCode 13、罗马数字转整数
罗马数字包含以下七种字符: I, V, X, L,C,D 和 M. 字符 数值I 1V 5X 10L 50C 100D 500M 1000例如, 罗马数字 2 写做 II ,即为两个并列的 1.12 ...
- Miller_Rabin()算法素数判定 +ollard_rho 算法进行质因数分解
//****************************************************************// Miller_Rabin 算法进行素数测试//速度快,而且可以 ...
- hdu6212 Zuma(区间dp)
#pragma GCC optimize(2) #include <bits/stdc++.h> #define ll long long #define ls(i) i<<1 ...
- BZOJ4566&&lg3181 HAOI找相同字符(广义后缀自动机)
BZOJ4566&&lg3181 HAOI找相同字符(广义后缀自动机) 题面 自己找去 HINT 给定两个文本串,问从两个串中各取一个非空子串,使这俩子串相同,问方案有多少种.我的思路 ...