近读到这样一篇文章,从底层硬件角度出发剖析了一下CPU对代码的识别和读取,内容之精彩,读完感觉学到的很多东西瞬间联系起来了,分享给猿们。

首先要开始这个话题要先说一下半导体。啥叫半导体?

半导体其实就是介于导体和绝缘体中间的一种东西,比如二极管。

电流可以从A端流向C端,但反过来则不行。你可以把它理解成一种防止电流逆流的东西。

当C端10V,A端0V,二极管可以视为断开。

当C端0V,A端10V,二极管可以视为导线,结果就是A端的电流源源不断的流向C端,导致最后的结果就是A端=C端=10V

等等,不是说好的C端0V,A端10V么?咋就变成结果是A端=C端=10V了?

你可以把这个理解成初始状态,当最后稳定下来之后就会变成A端=C端=10V。

文科的童鞋们对不住了,实在不懂问高中物理老师吧。反正你不能理解的话就记住这种情况下它相当于导线就行了。

利用半导体,我们可以制作一些有趣的电路,比如【与门】

此时A端B端只要有一个是0V,那Y端就会和0V地方直接导通,导致Y端也变成0V。只有AB两端都是10V,Y和AB之间才没有电流流动,Y端也才是10V。

我们把这个装置成为【与门】,把有电压的地方计为1,0电压的地方计为0。至于具体几V电压,那不重要。

也就是AB必须同时输入1,输出端Y才是1;AB有一个是0,输出端Y就是0。

其他还有【或门】【非门】和【异或门】,跟这个都差不多,或门就是输入有一个是1输出就是1,输入00则输入0。

非门也好理解,就是输入1输出0,输入0输出1。

异或门难理解一些,不过也就那么回事,输入01或者10则输出1,输入00或者11则输出0。(即输入两个一样的值则输出0,输入两个不一样的值则输出1)。

这几种门都可以用二极管做出来,具体怎么做就不演示了,有兴趣的童鞋可以自己试试。每次都画二极管也是个麻烦,我们就把门电路简化成下面几个符号。

然后我们就可以用门电路来做CPU了。当然做CPU还是挺难的,我们先从简单的开始:加法器。

加法器顾名思义,就是一种用来算加法的电路,最简单的就是下面这种。

AB只能输入0或者1,也就是这个加法器能算0+0,1+0或者1+1。

输出端S是结果,而C则代表是不是发生进位了,二进制1+1=10嘛。这个时候C=1,S=0

费了大半天的力气,算个1+1是不是特别有成就感?

那再进一步算个1+2吧(二进制01+10),然后我们就发现了一个新的问题:第二位需要处理第一位有可能进位的问题,所以我们还得设计一个全加法器。

每次都这么画实在太麻烦了,我们简化一下

也就是有3个输入2个输出,分别输入要相加的两个数和上一位的进位,然后输入结果和是否进位。

然后我们把这个全加法器串起来

我们就有了一个4位加法器,可以计算4位数的加法也就是15+15,已经达到了幼儿园中班水平,是不是特别给力?

做完加法器我们再做个乘法器吧,当然乘任意10进制数是有点麻烦的,我们先做个乘2的吧。

乘2就很简单了,对于一个2进制数数我们在后面加个0就算是乘2了

比如:

5=101(2)

10=1010(2)

所以我们只要把输入都往前移动一位,再在最低位上补个零就算是乘2了。具体逻辑电路图我就不画,你们知道咋回事就行了。

那乘3呢?简单,先位移一次(乘2)再加一次。乘5呢?先位移两次(乘4)再加一次。

所以一般简单的CPU是没有乘法的,而乘法则是通过位移和加算的组合来通过软件来实现的。这说的有点远了,我们还是继续做CPU吧。

现在假设你有8位加法器了,也有一个位移1位的模块了。串起来你就能算了!

(A+B)X2

激动人心,已经差不多到了准小学生水平。

那我要是想算呢?

AX2+B

简单,你把加法器模块和位移模块的接线改一下就行了,改成输入A先过位移模块,再进加法器就可以了。

啥????你说啥???你的意思是我改个程序还得重新接线?

所以你以为呢?编程就是把线来回插啊。

惊喜不惊喜?意外不意外?

早期的计算机就是这样编程的,几分钟就算完了但插线好几天。而且插线是个细致且需要耐心的工作,所以那个时候的程序员都是清一色的漂亮女孩子,穿制服的那种,就像照片上这样。是不是有种生不逢时的感觉?

虽然和美女作伴是个快乐的事,但插线也是个累死人的工作。所以我们需要改进一下,让CPU可以根据指令来相加或者乘2。

这里再引入两个模块,一个叫flip-flop,简称FF,中文好像叫触发器。

这个模块的作用是存储1bit数据。比如上面这个RS型的FF,R是Reset,输入1则清零。S是Set,输入1则保存1。RS都输入0的时候,会一直输出刚才保存的内容。

我们用FF来保存计算的中间数据(也可以是中间状态或者别的什么),1bit肯定是不够的,不过我们可以并联嘛,用4个或者8个来保存4位或者8位数据。这种我们称之为寄存器(Register)。

另外一个叫MUX,中文叫选择器。

这个就简单了,sel输入0则输出i0的数据,i0是什么就输出什么,01皆可。同理sel如果输入1则输出i1的数据。当然选择器可以做的很长,比如这种四进一出的

具体原理不细说了,其实看看逻辑图琢磨一下就懂了,知道有这个东西就行了。

有这个东西我们就可以给加法器和乘2模块(位移)设计一个激活针脚。

这个激活针脚输入1则激活这个模块,输入0则不激活。这样我们就可以控制数据是流入加法器还是位移模块了。

于是我们给CPU先设计8个输入针脚,4位指令,4位数据。

我们再设计3个指令:

0100,数据读入寄存器

0001,数据与寄存器相加,结果保存到寄存器

0010,寄存器数据向左位移一位(乘2)

为什么这么设计呢,刚才也说了,我们可以为每个模块设计一个激活针脚。然后我们可以分别用指令输入的第二第三第四个针脚连接寄存器,加法器和位移器的激活针脚。

这样我们输入0100这个指令的时候,寄存器输入被激活,其他模块都是0没有激活,数据就存入寄存器了。同理,如果我们输入0001这个指令,则加法器开始工作,我们就可以执行相加这个操作了。

这里就可以简单回答这个问题的第一个小问题了:

那cpu 是为什么能看懂这些二级制的数呢?

为什么CPU能看懂,因为CPU里面的线就是这么接的呗。你输入一个二进制数,就像开关一样激活CPU里面若干个指定的模块以及改变这些模块的连同方式,最终得出结果。

几个可能会被问道的问题

Q:CPU里面可能有成千上万个小模块,一个32位/64位的指令能控制那么多吗?

A:我们举例子的CPU里面只有3个模块,就直接接了。真正的CPU里会有一个解码器(decoder),把指令翻译成需要的形式。

Q:你举例子的简单CPU,如果我输入指令0011会怎么样?

A:当然是同时激活了加法器和位移器从而产生不可预料的后果,简单的说因为你使用了没有设计的指令,所以后果自负呗。(在真正的CPU上这么干大概率就是崩溃呗,当然肯定会有各种保护性的设计,死也就死当前进程)

细心的小伙伴可能发现一个问题:你设计的指令

【0001,数据与寄存器相加,结果保存到寄存器】

这个一步做不出来吧?毕竟还有一个回写的过程,实际上确实是这样。我们设计的简易CPU执行一个指令差不多得三步,读取指令,执行指令,写寄存器。

经典的RISC设计则是分5步:读取指令(IF),解码指令(ID),执行指令(EX),内存操作(MEM),写寄存器(WB)。我们平常用的x86的CPU有的指令可能要分将近20个步骤。

你可以理解有这么一个开关,我们啪的按一下,CPU就走一步,你按的越快CPU就走的越快。咦?听说你有个想法?少年,你这个想法很危险啊,姑且不说你有没有麒麟臂,能不能按那么快(现代的CPU也就2GHz多,大概也就一秒按个20亿下左右吧)

就算你能按那么快,虽然速度是上去了,但功耗会大大增加,发热上升稳定性下降。江湖上确实有这种玩法,名曰超频,不过新手不推荐你尝试哈。

那CPU怎么知道自己走到哪一步了呢?前面不是介绍了FF么,这个不光可以用来存中间数据,也可以用来存中间状态,也就是走到哪了。

具体的设计涉及到FSM(finite-state machine),也就是有限状态机理论,以及怎么用FF实装。这个也是很重要的一块,考试必考哈,只不过跟题目关系不大,这里就不展开讲了。

我们再继续刚才的讲,现在我们有3个指令了。我们来试试算个(1+4)X2+3吧。

0100 0001 ;寄存器存入1

0001 0100 ;寄存器的数字加4

0010 0000 ;乘2

0001 0011 ;再加三

太棒了,靠这台计算机我们应该可以打败所有的幼儿园小朋友,称霸大班了。而且现在我们用的是4位的,如果换成8位的CPU完全可以吊打低年级小学生了!

实际上用程序控制CPU是个挺高级的想法,再此之前计算机(器)的CPU都是单独设计的。

1969年一家日本公司BUSICOM想搞程控的计算器,而负责设计CPU的美国公司也觉得每次都重新设计CPU是个挺傻X的事,于是双方一拍即合,于1970年推出一种划时代的产品,世界上第一款微处理器4004。

这个架构改变了世界,那家负责设计CPU的美国公司也一步一步成为了业界巨头。哦对了,它叫Intel,对,就是噔噔噔噔的那个。

我们把刚才的程序整理一下,

01000001000101000010000000010011

你来把它输入CPU,我去准备一下去幼儿园大班踢馆的工作。神马?等我们输完了人家小朋友掰手指都能算出来了??

没办法机器语言就是这么反人类。哦,忘记说了,这种只有01组成的语言被称之为机器语言(机器码),是CPU唯一可以理解的语言。不过你把机器语言让人读,绝对一秒变典韦,这谁也受不了。

不懂就问」CPU 到底是怎么识别代码的?的更多相关文章

  1. CPU到底是什么东西?它为什么能够执行数学运算?

    CPU到底是什么东西?它为什么能够执行数学运算? 本文地址http://yangjianyong.cn/?p=20转载无需经过作者本人授权 简单的物理电路 先来看一张初中学过的物理电路图: 从图中我们 ...

  2. 性能分析之CPU分析-从CPU调用高到具体代码行(JAVA)

      通常情况下,性能报告中只说CPU使用率高的时候,并不能帮助定位问题.因为CPU高会有多种不同的情况.CPU有五种状态(us sy id wa st), 在vmstat中能显示出来,这个想必很多人都 ...

  3. 性能分析之CPU分析-从CPU调用高到具体代码行(C/C++)

    今天在培训的过程中,也提到了分析要具体到代码的事情,如果思路方向是正确的,对java应用和C/C++应用来说,也是几个命令就可以跳到代码行了.前提是要能看得懂堆栈信息.所以一直以来我在讲课的过程中都有 ...

  4. 如何用STAR法则来回答「宝洁八大问」

    掌握宝洁八大问,其实就是掌握了半个求职季 每年高峰期,很多同学会问到关于宝洁八大的问题,如何准备.怎么讲故事.如何体现自己的特点等等.针对同学们的提问,分享一篇关于如何回答好宝洁八大问的文章,希望能够 ...

  5. 这个命令可以看到你的cpu到底集合

      cat /proc/cpuinfo  |grep processor|awk '{print $3}'|wc -l    改变虚拟机分辨率  xrandr -s 1024x768 -r 60  或 ...

  6. 编译原理之不懂就问-First集

    老师PPT: 这条语言实在是..通俗易懂

  7. 四十年前的 6502 CPU 指令翻译成 JS 代码会是怎样

    去年折腾的一个东西,之前 blog 里也写过,不过那时边琢磨边写,所以比较杂乱,现在简单完整地讲解一下. 前言 当时看到一本虚拟机相关的书,正好又在想 JS 混淆相关的事,无意中冒出个问题:能不能把某 ...

  8. JVM调优之jstack找出最耗cpu的线程并定位代码

    jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多.下面我们来一个实例找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有 ...

  9. JVM调优之jstack找出最耗cpu的线程、定位代码

    jstack可以定位到线程堆栈,根据堆栈信息我们可以定位到具体代码,所以它在JVM性能调优中使用得非常多.下面我们来一个实例找出某个Java进程中最耗费CPU的Java线程并定位堆栈信息,用到的命令有 ...

随机推荐

  1. XAMPP修改Apache默认网站目录htdocs的详解

    XAMPP(Apache+MySQL+PHP+PERL)是一个功能强大的建 XAMPP 软件站集成环境包,大量站长在使用.正确安装好XAMPP后,默认是必须将php程序放到xampp\htdocs文件 ...

  2. 记一次 .NET 某旅行社Web站 CPU爆高分析

    一:背景 1. 讲故事 前几天有位朋友wx求助,它的程序内存经常飙升,cpu 偶尔飙升,没找到原因,希望帮忙看一下. 可惜发过来的 dump 只有区区2G,能在这里面找到内存泄漏那真有两把刷子..., ...

  3. foreign key 多对一 多对对 一对一

    使用foreign key 要清除先有哪张表再有哪张表,后表对应前表 例如现有部门再有员工,所以员工对应部门 现有作者后有书,所以书对应作者 现有潜在顾客后有顾客,所以顾客对应潜在顾客 多对多建立3张 ...

  4. goland无法解析go mod问题解决

    Goland 版本是 2018.03 由于之前使用GOPATH方式进行存在很多项目,在怎么配置后都无法解析包,但是命令行时正常的. 这边设置全局的设置,开启goland的go mod包管理. 创建新项 ...

  5. [OS] 概述&学习资料

    计算机启动 启动自检 初始化启动 启动加载 内核装载 登录 中断 硬件中断 I/O设备 CPU Timer:时间片结束后,发中断给CPU Scheduler:将CPU合理分配任务使用 异常中断 内存: ...

  6. 用nvm的方式安装node

    一.nvm简介 Node Version Manager(Node版本管理工具)由于以后的开发工作可能会在多个Node版本中测试,而且Node的版本也比较多,所以需要这么款工具来管理.   nvm的安 ...

  7. Mysql_二进制方式安装详解

    mysql 安装 1.安装方式 1.二进制安装 2.源码包安装 3.rpm包安装 1.二进制安装 1)上传或者下载包 [root@db01 ~]# rz #或者 [root@web01 ~]# wge ...

  8. Linux进阶之进程管理

    本节内容 1.进程管理 2.ps 3.uptime 4.top 5.ss -tnl------ lsof -i :22 一. 进程管理的概念 程序:二进制文件,静态 /bin/date,/usr/sb ...

  9. IDEA 查看类图功能(分析源码的利器)

    引言 做过项目开发的童靴,应该会有这样的经历,就是刚进公司领导二话不说直接丢个项目,而且没有任何文档,让熟悉一下,一两周就让上手写代码.打开项目后就看到一堆类源码,完全不知道从何处入手,应该如何分析项 ...

  10. 使用原生JS,实现鼠标点击爱心效果 !!!

    使用原生JS,实现鼠标点击爱心效果 !!! 引言: 在很多时候我们都需要实现鼠标点击出现图案或者文字这样的效果,对于用户而言,这样的体验是很极致的.其实实现起来也很简单,下面一起来学习一下吧.文末附上 ...