题面传送门

一道挺有意思的题罢……

首先看到这种与置换乘法相关的题,首先把这些置换拆成一个个置换环,假设输入的置换有 \(m\) 个置换环,大小分别为 \(s_1,s_2,\cdots,s_m\),显然置换环与置换环的顺序是不影响的,因此我们只用考虑它的大小即可。

其次我们考虑对于一个置换,我们来考虑对其进行 \(k\) 次幂后会得到什么。手玩几组数据就可以发现,原来不在同一个置换环中的元素,进行 \(k\) 次幂后,肯定也不会在同一个置换环中,而有的原本在同一个置换环中的元素进行 \(k\) 次幂后会被拆开,具体来说,对于一个大小为 \(s\) 的置换环,进行 \(k\) 次幂后会拆成 \(\gcd(s,k)\) 个等大小的置换环,道理很明白,对于一个元素,你每次绕着置换环走 \(k\) 步,显然 \(\dfrac{s}{\gcd(s,k)}\) 次就会回到源点,因此 \(k\) 次幂后拆出的置换环中,单个置换环大小就是 \(\dfrac{s}{\gcd(s,k)}\)。

也就是说 \(s_1,s_2,\cdots,s_m\) 中有一些大小相同的置换环能拼起来,显然不同大小的置换环的方案数是独立的,因此我们可以分别求出每个大小的置换环拼起来的方案数再用乘法原理乘起来。考虑设 \(c_i\) 表示大小为 \(i\) 的置换环有多少个,那么根据之前的结论 \(j\) 个大小为 \(i\) 的置换环能够拼起来当且仅当 \(\gcd(ij,k)=j\)。那么怎么求大小为 \(i\) 的置换环拼起来有多少种方案呢?这时候就要用到 \(dp\) 了,我们设 \(dp_j\) 表示用了 \(j\) 个大小为 \(i\) 的置换环的方案数,考虑转移,我们枚举第 \(j\) 个大小为 \(i\) 的置换环跟多少个环在一起拼成大环,假设为 \(r\) 个,那么 \(dp_i=\sum\limits_rdp_{i-r}\dbinom{i-1}{r-1}f(r,i)[\gcd(ir,k)=r]\),其中 \(f(r,i)\) 表示将 \(r\) 个大小为 \(i\) 的置换环拼起来的方案数,注意到 \(\gcd(ir,k)=r\Rightarrow r\mid k\),因此枚举的 \(r\) 必须是 \(k\) 的约数,又 \(\sum c_i=m\) 是 \(\mathcal O(n)\) 级别的,因此这样暴力 DP 总枚举量是 \(n·d(k)\) 的。

最后考虑怎样求 \(f(r,i)\),由于最后拼成的是一个环,因此我们钦定第一个环的第一个元素必须在第一个位置,否则会算重,将剩余 \(r-1\) 个环填入剩余 \(r-1\) 个位置有 \((r-1)!\) 种,剩余 \((r-1)!\) 个环也可自由旋转,方案数为 \(i^{r-1}\),因此 \(f(r,i)=(r-1)!\times i^{r-1}\),随便算算即可。

时间复杂度 \(n·d(k)·\log n\),因为计算 \(f(r,i)\) 时涉及快速幂。

const int MAXN=1e5;
const int MOD=998244353;
int n,p[MAXN+5],c[MAXN+5],dp[MAXN+5],vis[MAXN+5];
int fac[MAXN+5],ifac[MAXN+5];vector<int> f;
int gcd(int x,int y){return (!y)?x:gcd(y,x%y);}
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
void init_fac(int n){
for(int i=(fac[0]=ifac[0]=ifac[1]=1)+1;i<=n;i++) ifac[i]=1ll*ifac[MOD%i]*(MOD-MOD/i)%MOD;
for(int i=1;i<=n;i++) fac[i]=1ll*fac[i-1]*i%MOD,ifac[i]=1ll*ifac[i-1]*ifac[i]%MOD;
}
int binom(int n,int k){return 1ll*fac[n]*ifac[k]%MOD*ifac[n-k]%MOD;}
int main(){
scanf("%d",&n);init_fac(n);int ans=1;
for(int i=1;i<=n;i++) scanf("%d",&p[i]);
for(int i=1;i<=n;i++) if(n%i==0) f.pb(i);
for(int i=1;i<=n;i++) if(!vis[i]){
int siz=0;for(int j=i;!vis[j];j=p[j]) vis[j]=1,siz++;
c[siz]++;
}
for(int i=1;i<=n;i++){
dp[0]=1;
for(int j=1;j<=c[i];j++){
dp[j]=0;
for(int k=0;k<f.size()&&f[k]<=j&&i*f[k]<=n;k++)
if(gcd(i*f[k],n)==f[k]){
dp[j]=(dp[j]+1ll*dp[j-f[k]]*binom(j-1,f[k]-1)%MOD*
fac[f[k]-1]%MOD*qpow(i,f[k]-1))%MOD;
}
} ans=1ll*ans*dp[c[i]]%MOD;
} printf("%d\n",ans);
return 0;
}

洛谷 P4709 - 信息传递(置换+dp)的更多相关文章

  1. 洛谷P2661 信息传递(最小环,并查集)

    洛谷P2661 信息传递 最小环求解采用并查集求最小环. 只适用于本题的情况.对于新加可以使得两个子树合并的边,总有其中一点为其中一棵子树的根. 复杂度 \(O(n)\) . #include< ...

  2. [NOIP2015] 提高组 洛谷P2661 信息传递

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  3. 洛谷 P2661 信息传递 Label:并查集||强联通分量

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  4. 洛谷P2661 信息传递==coedevs4511 信息传递 NOIP2015 day1 T2

    P2661 信息传递 题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知 ...

  5. 洛谷 P2661 信息传递(并查集 & 最小环)

    嗯... 题目链接:https://www.luogu.org/problemnew/show/P2661 这道题和一些比较水的并查集不太一样,这道题的思路就是用并查集来求最小环... 首先,如果我们 ...

  6. NOIP2015提高组T2 洛谷P2661 信息传递

    题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为i的同学的信息传递对象是编号为Ti同学. 游戏开始时,每人都只知道自己的生日.之后每一 ...

  7. 洛谷——P2661 信息传递

    https://www.luogu.org/problem/show?pid=2661#sub 题目描述 有n个同学(编号为1到n)正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其 ...

  8. 洛谷 P2661 信息传递 题解

    P2661 信息传递 题目描述 有 \(n\) 个同学(编号为 \(1\) 到 \(n\) )正在玩一个信息传递的游戏.在游戏里每人都有一个固定的信息传递对象,其中,编号为 \(i\) 的同学的信息传 ...

  9. 洛谷p2661信息传递题解

    题目 这个题一眼看上去就是用并查集求最小环. 我们可以设两个数组分别是f,d分别表示该点的爸爸和该点到祖先的距离. 当该点的爸爸等于他时,那他肯定就是祖先. 此时信息就肯定传递完了,此时的整个图中(我 ...

随机推荐

  1. javascript-原生-面向对象

    1.javascript面向对象程序设计 概述:javascript不想其他面向对象编程语言那样有类的概念,javascript没有类(构造函数)的概念,只有对象的概念. 2.理解javascript ...

  2. 微信小程序的实现原理

    一.背景 网页开发,渲染线程和脚本是互斥的,这也是为什么长时间的脚本运行可能会导致页面失去响应的原因,本质就是我们常说的 JS 是单线程的 而在小程序中,选择了 Hybrid 的渲染方式,将视图层和逻 ...

  3. android tcp通讯

    Andoird TCP通讯 前言 最近在写一个即时通讯的项目,有一些心得,写出来给大家分享指正一下. 简单描述一下这个项目: 实时查询车辆运行状态的项目,走TCP通迅. 接口采用GZIP压缩. 后台是 ...

  4. 『学了就忘』Linux基础 — 7、补充:安装Linxu系统时设置硬盘挂载说明

    目录 (1)新建一个/home分区 (2)再创建一个/boot分区. (3)创建一个swap分区 (4)最后剩余的空间全部分给根目录 (5)总结 上一篇在VMwar虚拟机中安装Linux操作系统中ht ...

  5. 企业级BI为什么这么难做?

    本人长期在银行内从事数据线相关工作,亲眼目睹过多个企业级BI(非部门级BI)产品从上线试用.全行推广.然后衰败没落,再替换到下一个BI产品重复此过程.企业内没有任何一个BI产品即能长期运行,又能赢得非 ...

  6. 基于openeuler的openssl编程

    ------------恢复内容开始------------ 一.编译环境 我下载好之后默认安装了openssl,若未安装的可输入以下命令: wget https://www.openssl.org/ ...

  7. Java RMI学习与解读(三)

    Java RMI学习与解读(三) 写在前面 接下来这篇就是最感兴趣的Attack RMI部分了. 前面也说过,RMI的通信过程会用到反序列化,那么针对于RMI的三个角色: Server/Regisrt ...

  8. Linux&C网络编程————“聊天室”

    从上周到现在一直在完成最后的项目,自己的聊天室,所以博客就没怎么跟了,今天晚上自己的聊天室基本实现,让学长检查了,也有好些bug,自己还算满意,主要实现的功能有: 登录注册 附近的人(服务器端全部在线 ...

  9. Centos6.8 yum报错及修复YumRepo Error: All mirror URLs are not using ftp, http[s] or file. Eg. Invalid

    问题 使用yum安装软件时报错 YumRepo Error: All mirror URLs are not using ftp, http[s] or file. Eg. Invalid relea ...

  10. 浅讲.Net 6 并与之前版本写法对比

    介绍 昨天vs2022正式版已经推出了,估计很多人已经下载并开始创建.Net 6 开始尝鲜了, 本节我简要的给大家介绍一下.Net 6的一些改动. 正文 本次.Net6带来最明显的变化就是: 采用顶级 ...