Codeforces Round#704 Div2 题解(A,B,C,D,E)
FST ROUND !!1
A Three swimmers:
直接整除一下向上取整就好了:
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 10;
ll p,a,b,c;
int main() {
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int times;
cin >> times;
while(times--) {
cin >> p >> a >> b >> c;
cout << min((p + a - 1) / a * a - p,min((p + b - 1) / b * b - p,(p + c - 1) / c * c - p)) << '\n';
}
return 0;
}
B Card Deck:
(本人 CF 打得很少但感觉一般都是这种通过性质条件贪心的题)
保证了原数列是一个排列 \(1 \le a_i \le n\),而每一位差异的系数等于 \(n\)。
所以每次找剩余部分的最大值即可。
本人懒得写数据结构,写了个堆和删除堆(太久没写过在赛场上差点没写出来 /kk)
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 1e5 + 10;
priority_queue<pair<int,int> > p;
priority_queue<pair<int,int> > del;
int a[N];
int b[N],cnt = 0;
int n,m;
int times;
int main() {
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
cin >> times;
while(times--) {
cin >> n ;
for(int i = 1;i <= n;i++) {
cin >> a[i];
p.push(make_pair(a[i],i));
}
int poi = n;
cnt = 0;
while(p.empty() == false) {
while(p.empty() == false && del.empty() == false && p.top() == del.top()) {
p.pop(),del.pop();
}
if(p.empty()) break;
int u = p.top().second;
for(int i = u;i <= poi;i++) {
b[++cnt] = a[i];
del.push(make_pair(a[i],i));
}
poi = u - 1;
}
for(int i = 1;i <= n;i++) {
cout << b[i] << ' ';
}
cout << '\n';
}
return 0;
}
C Maximum width:
比较显然的一个贪心,因为每一个 \(s\) 中必会存在 \(t\) 所以对于 \(t\) 每一位可以得到一个合法取值的最小/大值(正反扫一遍)。
对于相邻的两个数 \(i,i + 1\),以 \(i\) 为分界分开,\(i\) 及 \(i\) 以前的都取最小情况,\(i + 1\) 及其以后都取最大情况,便可以保证合法性。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N = 2e5 + 10;
int n,m;
char s[N],t[N];
int poi = 0;
int Er[N],La[N];
int main() {
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
cin >> n >> m;
cin >> (s + 1);
cin >> (t + 1);
poi = 1;
for(int i = 1;i <= n;i++) {
if(s[i] == t[poi]) {
Er[poi] = i;
poi++;
}
if(poi > m) break;
}
poi = m;
for(int i = n;i >= 1;i--) {
if(s[i] == t[poi]) {
La[poi] = i;
poi--;
}
if(!poi) break;
}
int ans = 0;
for(int i = 1;i < m;i++) {
ans = max(ans,abs(Er[i] - La[i + 1]));
}
cout << ans << '\n';
return 0;
}
D Genius's Gambit:
魔鬼题,机房仅有一人没有被 \(\texttt{FST}\)。
注意到类似于这样的一种情况,相减后总是会贡献出 \(len\) 长度的 \(1\):(以下为两个长度为 \(len + 1\) 的字符串)
\(\texttt{1111...1100...0000}\)
\(\texttt{1011...1100...0001}\)
所以我们一开始令第一个串类似于这样的结构 :
\(\texttt{1111...1100...0000}\)
这样只需找到这个序列的第 \(i\) 位交换到第 \(i + k\) 位即可得到第二个串。(满足 \(a[i] = 1,a[i + k] = 0\))
但是此题边界条件很多:
首先考虑构造的时候条件:满足 \(k \ge a + b - 1\) 时无解。
当 \(a = 0\) 时,当且仅当 \(k = 0\) 有解。
当 \(b = 1\) 时,当且仅当 \(k = 0\) 有解。
但还有一个特例 :
\(a = 0,b = 1,k = 0.\)
这一个特例并不满足 \(k \le a + b - 2\) 但确实有解。
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
char ans[300000];
int main() {
ios::sync_with_stdio(false);
cin.tie(0),cout.tie(0);
int a,b,k;
cin >> a >> b >> k;
if(!a) {
if(!k) {
cout << "Yes" << '\n';
for(int i = 1;i <= b;i++) {
cout << "1" ;
}
cout << '\n';
for(int i = 1;i <= b;i++) {
cout << "1" ;
}
} else {
cout << "No" << '\n';
}
return 0;
}
if(b == 1) {
if(!k) {
cout << "Yes" << '\n';
cout << '1' ;
for(int i = 1;i <= a + b - 1;i++) {
cout << '0';
}
cout << '\n';cout << '1' ;
for(int i = 1;i <= a + b - 1;i++) {
cout << '0';
}
cout << '\n';
} else {
cout << "No";
return 0;
}
return 0;
}
if(k >= a + b - 1) {
cout << "No" << '\n';
return 0;
}
cout << "Yes" << '\n';
for(int i = 1;i <= b;i++) ans[i] = '1';
for(int i = b + 1;i <= a + b;i++) ans[i] = '0';
for(int i = 1;i <= a + b;i++) cout << ans[i];cout << '\n';
for(int i = 2;i <= a + b;i++) {
if(ans[i] == '1' && ans[i + k] == '0') {
swap(ans[i],ans[i + k]);
break;
}
}
for(int i = 1;i <= a + b;i++) {
cout << ans[i];
}
return 0;
}
E Almost Fault-Tolerant Database:
因为要构造一串序列要满足与任意序列的不同处不超过 \(2\) ,不如就直接取第一个序列然后加之修改。
考虑第一个序列和其余序列可能存在的情况:
- 和一个串的不同处 \(>4\) ,这时无论如何都是无解。
- 和每一个串的不同处 $ \le 2$ ,这时这一个序列就可以是答案。
- 存在一些序列不同处 \(=3,4\) ,考虑如何处理使不同处减小到 \(2\) 以下。
首先不难发现,如果只有一对不同串不同处大于 \(2\),我们可以去枚举造成不同的位置 ,对其进行更改,使现在不同处 \(\le 2\),然后去检查修改后的串是否满足整个序列不同处 \(\le 2\)。
如果此时只有三个串不同处大于 \(2\),我们可以任意选择一个串进行修改,因为每次修改都是枚举完了所有不同处的情况的,如果此时修改后检查不合法,那么枚举另一个串修改了检查时也会不合法。
所以一开始选取一个与第一个串不同处最多的串,然后枚举修改的位置即可。
注意到有可能修改会修改成为其余序列的值,所以将其中一个设定为 \(-1\) 处理,表示这个位置可以被修改。
最终实现的复杂度为 \(O(nm)\) ,常数不大。
Codeforces Round#704 Div2 题解(A,B,C,D,E)的更多相关文章
- [Codeforces Round #461 (Div2)] 题解
[比赛链接] http://codeforces.com/contest/922 [题解] Problem A. Cloning Toys [算法] 当y = 0 , 不可以 当 ...
- CodeForces round 967 div2 题解(A~E)
本来准备比完赛就写题解的, 但是一拖拖了一星期, 唉 最后一题没搞懂怎么做,恳请大神指教 欢迎大家在评论区提问. A Mind the Gap 稳定版题面 https://cn.vjudge.net/ ...
- Codeforces Round #407 div2 题解【ABCDE】
Anastasia and pebbles 题意:你有两种框,每个框可以最多装k重量的物品,但是你每个框不能装不一样的物品.现在地面上有n个物品,问你最少多少次,可以把这n个物品全部装回去. 题解:其 ...
- Codeforces Round #467(Div2)题解
凌晨起来打CF,0:05,也是我第一次codeforces 第一题: 我刚开始怀疑自己读错题了,怎么会辣么水. 判除了0的数字种类 #include <cstdio> ; ]; int m ...
- Codeforces Round#687 Div2 题解
打这场的时候迷迷糊糊的,然后掉分了( A Prison Break: 题面很复杂,但是题意很简单,仅需求出从这个点到四个角的最大的曼哈顿距离即可 #include <bits/stdc++.h& ...
- CodeForces Round #516 Div2 题解
A. Make a triangle! 暴力... 就是给你三个数,你每次可以选一个加1,问最少加多少次能构成三角形 #include <bits/stdc++.h> #define ll ...
- Codeforces Round #539 div2
Codeforces Round #539 div2 abstract I 离散化三连 sort(pos.begin(), pos.end()); pos.erase(unique(pos.begin ...
- Codeforces Round #543 Div1题解(并不全)
Codeforces Round #543 Div1题解 Codeforces A. Diana and Liana 给定一个长度为\(m\)的序列,你可以从中删去不超过\(m-n*k\)个元素,剩下 ...
- Codeforces Round #545 Div1 题解
Codeforces Round #545 Div1 题解 来写题解啦QwQ 本来想上红的,结果没做出D.... A. Skyscrapers CF1137A 题意 给定一个\(n*m\)的网格,每个 ...
随机推荐
- python mixin到底是什么
python mixin到底是什么 1.什么是Mixin 在面向对象编程中,Mixin是一种类,这种类包含了其他类要使用的方法,但不必充当其他类的父类.其他类是如何获取Mixin中的方法因语言的不同而 ...
- Python-Redis-常用操作&管道
常用操作 1.1 delete(*names) ? 1 2 3 4 5 6 7 8 9 # 根据删除redis中的任意数据类型 print(r.get('name')) r.delete('nam ...
- Bringing up interface eth0: Error: No suitable device found: no device found for connection 'System eth0'.
在VMware的虚拟机中克隆CentOS,在重启网卡的时候报错: Shutting down loopback interface: [ OK ] Bringing up loopback int ...
- Count(1),Count(*),Count(column)区别
count是一种最简单的聚合函数,一般也是我们第一个开始学习的聚合函数,那么他们之间究竟由什么区别呢? 有的人说count(1)和count(*)他们之间有区别,而有的人说他们之间没有区别那么他们之间 ...
- NVIDIA CUDA-X AI
NVIDIA CUDA-X AI 面向数据科学和 AI 的 NVIDIA GPU 加速库 数据科学是推动 AI 发展的关键力量之一,而 AI 能够改变各行各业. 但是,驾驭 AI 的力量是一个复杂挑战 ...
- 图像实例分割:CenterMask
图像实例分割:CenterMask CenterMask: single shot instance segmentation with point representation 论文链家: http ...
- 整理AI性能指标
整理AI性能指标 Sorting out AI performance metrics 推理性能的最佳衡量标准是什么? 在人工智能加速器的世界里,对于给定的算法,芯片的性能经常以每秒万亿次的运算量(T ...
- 编译原理-一种词法分析器LEX原理
1.将所有单词的正规集用正规式描述 2.用正规式到NFA的转换算 得到识别所有单词用NFA 3.用NFA到DFA的转换算法 得到识别所有单词用DFA 4.将DFA的状态转换函数表示成二维数组 并与DF ...
- UE4.22编辑器界面操控设置(4)
视频课程地址:https://i.youku.com/i/UMzE2NDk2OTIw/custom?spm=a2hzp.8244740.0.0&id=32318 -在场景中按住鼠标左键上下移动 ...
- 惊艳面试官的 Cookie 介绍
Cookie 是什么 Cookie 是用户浏览器保存在本地的一小块数据,它会在浏览器下次向同一服务器再发起请求时被携带并发送到服务器上. Cookie 主要用于以下三个方面: 会话状态管理(如用户登录 ...