【笔记】使用scikit-learn解决回归问题
使用sklearn解决回归问题
依然是加载数据
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
boston = datasets.load_boston()
X = boston.data
y = boston.target
X = X[y < 50.0]
y = y[y < 50.0]
通过shape看X矩阵中的结构
X.shape

然后对数据集进行切分,由于sklearn中的随机和分割方法不同,因此,使用自己的会比较能体现出来,但是,我懒得改了
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test = train_test_split(X,y,random_state=666)
在sklearn中使用线性回归
引用并实例化
from sklearn.linear_model import LinearRegression
lin_reg = LinearRegression()
将X_train,y_train传进去,进行fit
lin_reg.fit(X_train,y_train)

查看其中的内容
lin_reg.coef_

lin_reg.intercept_

lin_reg.score(X_test,y_test)

Knn regressor
我们也可以使用knn来解决回归问题
先到用相应的类并对其进行初始化,k默认为5,在fit以后,最后看一下准确率
from sklearn.neighbors import KNeighborsRegressor
knn_reg = KNeighborsRegressor()
knn_reg.fit(X_train,y_train)
knn_reg.score(X_test,y_test)

knn中含有超参数,我们使用网格搜索的方式来搜索一下相应的超参数,需要定义数组规定范围,创建变量构造函数,使用并行处理(-1为全部核心),并进行输出
from sklearn.model_selection import GridSearchCV
param_grid = [
{
'weights':['uniform'],
'n_neighbors':[i for i in range(1,11)]
},
{
'weights':['distance'],
'n_neighbors':[i for i in range(1,11)],
'p': [i for i in range(1,6)]
}
]
knn_reg = KNeighborsRegressor()
grid_search = GridSearchCV(knn_reg,param_grid ,n_jobs=-1,verbose=1)
grid_search.fit(X_train,y_train)

得到结果以后可以简单地来看看最好的结果(不知道为啥,很多计算的数据结果我都和课程不一样,不知道是电脑问题还是版本问题)
grid_search.best_params_
预测准确率
grid_search.best_score_

为了得到相同的衡量标准的预测率结果,来真正看基于网格搜索算法的结果
grid_search.best_estimator_.score(X_test,y_test)

这是不如线性回归的结果的
但是也是有一部分原因是因为使用网格搜索的时候我们比较实用的score是 GridSearchCV中的score的计算方法,我们没有挑出来使用我们这组数据中的score的来获得的最佳参数,不能武断的说某算法不如某算法,要结合应用环境以及场景才行

【笔记】使用scikit-learn解决回归问题的更多相关文章
- (原创)(四)机器学习笔记之Scikit Learn的Logistic回归初探
目录 5.3 使用LogisticRegressionCV进行正则化的 Logistic Regression 参数调优 一.Scikit Learn中有关logistics回归函数的介绍 1. 交叉 ...
- (原创)(三)机器学习笔记之Scikit Learn的线性回归模型初探
一.Scikit Learn中使用estimator三部曲 1. 构造estimator 2. 训练模型:fit 3. 利用模型进行预测:predict 二.模型评价 模型训练好后,度量模型拟合效果的 ...
- 【笔记】SVM思想解决回归问题
使用svm思想解决回归问题 使用svm思想解决是如何解决回归问题,其中回归问题的本质就是找一条线,能够最好的拟合数据点 怎么定义拟合就是回归算法的关键,线性回归算法就是让预测的直线的MSE的值最小,对 ...
- Scikit Learn: 在python中机器学习
转自:http://my.oschina.net/u/175377/blog/84420#OSC_h2_23 Scikit Learn: 在python中机器学习 Warning 警告:有些没能理解的 ...
- scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类 (python代码)
scikit learn 模块 调参 pipeline+girdsearch 数据举例:文档分类数据集 fetch_20newsgroups #-*- coding: UTF-8 -*- import ...
- UFLDL深度学习笔记 (二)SoftMax 回归(矩阵化推导)
UFLDL深度学习笔记 (二)Softmax 回归 本文为学习"UFLDL Softmax回归"的笔记与代码实现,文中略过了对代价函数求偏导的过程,本篇笔记主要补充求偏导步骤的详细 ...
- 机器学习:SVM(SVM 思想解决回归问题)
一.SVM 思想在解决回归问题上的体现 回归问题的本质:找到一条直线或者曲线,最大程度的拟合数据点: 怎么定义拟合,是不同回归算法的关键差异: 线性回归定义拟合方式:让所有数据点到直线的 MSE 的值 ...
- Scikit Learn
Scikit Learn Scikit-Learn简称sklearn,基于 Python 语言的,简单高效的数据挖掘和数据分析工具,建立在 NumPy,SciPy 和 matplotlib 上.
- 《机器学习实战》学习笔记第五章 —— Logistic回归
一.有关笔记: 1..吴恩达机器学习笔记(二) —— Logistic回归 2.吴恩达机器学习笔记(十一) —— Large Scale Machine Learning 二.Python源码(不带正 ...
随机推荐
- 【转载】Nginx多服务绑定80端口及映射域名
多服务绑定80端口及映射域名 说明:业务需要配置的样例模板,如需深入了解,请查看官方文档 1.Nginx配置文件nginx.conf(可拆分多台机器部署) worker_processes 1; e ...
- 输出数组中出现次数最多且值最大的数字----python
class Solution(): #求最多的数 def find_max(self,list): num = 0 for i in list: print(i) if list.count(i) & ...
- mysql Authentication plugin 'caching_sha2_password' is not supported问题处理
使用mysql8.0版本,登录失败,提示 Authentication plugin 'caching_sha2_password' is not supported. 原因是在MySQL 8.0以后 ...
- python使用笔记15--操作Excel
python操作Excel需要引入第三方模块 执行以下命令: pip install xlwt pip install xlrd pip install xlutils 1.写Excel 1 impo ...
- Python_结合Re正则模块爬虫
##### 爬取古诗文import reimport requestsdef parse_page(url): headers = { 'User-Agent':'Mozilla/5.0 (Windo ...
- 【剑指offer】28. 对称的二叉树
剑指 Offer 28. 对称的二叉树 知识点:二叉树:递归 题目描述 请实现一个函数,用来判断一棵二叉树是不是对称的.如果一棵二叉树和它的镜像一样,那么它是对称的. 示例 输入:root = [1, ...
- 网络损伤仪WANsim的带宽限制功能
带宽限制功能 带宽限制功能是网络损伤仪WANsim的第一项损伤功能.进入WANsim的报文首先会经过报文过滤器的处理,随后,就会进入带宽限制. 点击虚拟链路,就可以进入网络损伤界面,对报文进行带宽限制 ...
- 一次搞懂JavaScript对象
索引 目录 索引 1. 对象与类 2.对象使用 2.1 语法 2.2 属性 3.对象特性 4.对象的创建 4.1 字面量 4.2 工厂函数 4.3 构造函数 4.4 class类 4.5 对象与单例模 ...
- CF175E Power Defence
CF175E Power Defence 题意 一个塔防游戏:给定一个无限长的数轴,一个无限血的敌人要从正无穷走到负无穷.你的任务是放置三种塔,包含两种攻击塔和一种寒冰塔,使得敌人受到的伤害最大. 其 ...
- 搭建NFS服务
说明:这里是Linux服务综合搭建文章的一部分,本文可以作为单独搭建yum仓库的参考. 注意:这里所有的标题都是根据主要的文章(Linux基础服务搭建综合)的顺序来做的. 如果需要查看相关软件版本和主 ...