Solution -「ABC 213H」Stroll
\(\mathcal{Description}\)
Link.
给定一个含 \(n\) 个结点 \(m\) 条边的简单无向图,每条边的边权是一个常数项为 \(0\) 的 \(T\) 次多项式,求所有从 \(1\) 结点出发回到 \(1\) 结点的环路中,边权之积的 \(T\) 次项系数和。
\(n,m\le10\),\(T\le4\times10^4\)。
\(\mathcal{Solution}\)
令 \(f_i(x)=\sum_{j\ge0}f_{i,j}x^j\),从 \(1\) 出发到 \(i\) 的所有路径边权积的和,那么对于一条边 \(e(u,v)\),设其边权为 \(g_e\),它会为 \(f\) 提供转移:
\]
即
\]
所以整体做一个分治 FFT 就能求出所有 \(f\)。复杂度 \(\mathcal O(mT\log^2T)\)。
\(\mathcal{Code}\)
/*~Rainybunny~*/
#include <cstdio>
#include <vector>
#include <cassert>
#include <algorithm>
#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i )
typedef std::vector<int> Poly;
const int MAXN = 10, MAXL = 1 << 17, MOD = 998244353;
int N, M, T, eu[MAXN + 5], ev[MAXN + 5];
Poly E[MAXN + 5], F[MAXN + 5];
inline void subeq( int& a, const int b ) { ( a -= b ) < 0 && ( a += MOD ); }
inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline void addeq( int& a, const int b ) { ( a += b ) >= MOD && ( a -= MOD ); }
inline int mul( const int a, const int b ) { return int( 1ll * a * b % MOD ); }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
}
namespace PolyOper {
const int MG = 3;
int omega[17][MAXL];
inline void init() {
rep ( i, 0, 16 ) {
int* oi = omega[i];
oi[0] = 1, oi[1] = mpow( MG, MOD - 1 >> i >> 1 );
rep ( j, 2, ( 1 << i ) - 1 ) oi[j] = mul( oi[j - 1], oi[1] );
}
}
inline void ntt( Poly& u, const int type ) {
static int rev[MAXL]; rev[0] = 0;
int n = int( u.size() ), lgn = 1; for ( ; 1 << lgn < n; ++lgn );
rep ( i, 1, n - 1 ) rev[i] = rev[i >> 1] >> 1 | ( i & 1 ) << lgn >> 1;
rep ( i, 1, n - 1 ) if ( i < rev[i] ) {
u[i] ^= u[rev[i]] ^= u[i] ^= u[rev[i]];
}
for ( int i = 0, stp = 1; stp < n; ++i, stp <<= 1 ) {
int* oi = omega[i];
for ( int j = 0; j < n; j += stp << 1 ) {
rep ( k, j, j + stp - 1 ) {
int ev = u[k], ov = mul( oi[k - j], u[k + stp] );
u[k] = add( ev, ov ), u[k + stp] = sub( ev, ov );
}
}
}
if ( !~type ) {
int ivn = MOD - ( MOD - 1 ) / n;
rep ( i, 0, n - 1 ) u[i] = mul( u[i], ivn );
std::reverse( u.begin() + 1, u.end() );
}
}
} // namespace PolyOper.
inline Poly operator * ( Poly u, Poly v ) {
assert( u.size() && v.size() );
int su = int( u.size() ), sv = int( v.size() ), len = 1;
for ( ; len < su + sv - 1; len <<= 1 );
u.resize( len ), v.resize( len );
PolyOper::ntt( u, 1 ), PolyOper::ntt( v, 1 );
rep ( i, 0, len - 1 ) u[i] = mul( u[i], v[i] );
PolyOper::ntt( u, -1 );
return u.resize( su + sv - 1 ), u;
}
inline void solve( const int l, const int r ) {
if ( l == r ) return ;
int mid = l + r >> 1;
solve( l, mid );
rep ( i, 1, M ) {
int u = eu[i], v = ev[i];
static Poly A, B, R;
A = { F[u].begin() + l, F[u].begin() + mid + 1 };
B = { E[i].begin() + 1, E[i].begin() + r - l + 1 };
R = A * B;
rep ( j, mid + 1, r ) addeq( F[v][j], R[j - l - 1] );
A = { F[v].begin() + l, F[v].begin() + mid + 1 };
B = { E[i].begin() + 1, E[i].begin() + r - l + 1 };
R = A * B;
rep ( j, mid + 1, r ) addeq( F[u][j], R[j - l - 1] );
}
solve( mid + 1, r );
}
int main() {
PolyOper::init();
scanf( "%d %d %d", &N, &M, &T );
rep ( i, 1, M ) {
scanf( "%d %d", &eu[i], &ev[i] ), --eu[i], --ev[i];
E[i].resize( T + 1 );
rep ( j, 1, T ) scanf( "%d", &E[i][j] );
}
rep ( i, 0, N - 1 ) F[i].resize( T + 1 );
F[0][0] = 1, solve( 0, T );
printf( "%d\n", F[0][T] );
return 0;
}
Solution -「ABC 213H」Stroll的更多相关文章
- Solution -「ABC 219H」Candles
\(\mathcal{Description}\) Link. 有 \(n\) 支蜡烛,第 \(i\) 支的坐标为 \(x_i\),初始长度为 \(a_i\),每单位时间燃烧变短 \(1\) ...
- Solution -「ABC 215H」Cabbage Master
\(\mathcal{Description}\) Link. 有 \(n\) 种颜色的,第 \(i\) 种有 \(a_i\) 个,任意两球互不相同.还有 \(m\) 个盒子,每个盒子可以被放 ...
- Solution -「ABC 213G」Connectivity 2
\(\mathcal{Description}\) Link. 给定简单无向图 \(G=(V,E)\),点的编号从 \(1\) 到 \(|V|=n\).对于 \(k=2..n\),求 \(H= ...
- Solution -「ABC 217」题解
D - Cutting Woods 记录每一个切割点,每次求前驱后驱就好了,注意简单判断一下开闭区间. 考场上采用的 FHQ_Treap 无脑莽. #include <cstdio> #i ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution Set -「ABC 217」
大家好屑兔子又来啦! [A - Lexicographic Order] 说个笑话,\(\color{black}{\text{W}}\color{red}{\text{alkingDead} ...
- Solution -「ARC 110E」Shorten ABC
\(\mathcal{Description}\) Link. 给定长度为 \(n\),包含 A, B, C 三种字符的字符串 \(S\),定义一次操作为将其中相邻两个不相同的字符替换为字符集 ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
随机推荐
- C# - 集合差集计算
使用 Except 方法做差集, 结果赋值给 IEnumerable 类 ,这是一个枚举集合类 ,泛型使用对应的类型即可,没办法之间使用count 或 lenght 方法获取,只能循环计算
- [Flask] Flask问题集(后端模板渲染项目)
1.redirect和render_template的区别? redirect:重定向,会改变url render_template:模板渲染,用模板来渲染当前页,不会改变url 2.关于 'g' 对 ...
- windows更改pip源(可用)
中国科学技术大学 : https://pypi.mirrors.ustc.edu.cn/simple 清华:https://pypi.tuna.tsinghua.edu.cn/simple 豆瓣:ht ...
- systemd学习及使用
什么是systemd? (译)systemd是linux系统的一组基础构件块.它提供了一个系统和服务的管理,它以PID 1 的形式运行并启动系统的其余部分.systemd 使用积极的并行化功能,使用s ...
- Git创建分支进行开发
一.业务场景 自己当前开发的项目算是一个中型项目,整个项目都是由自己一个人开发完成,主要有两个子项目,一个是小程序的后台,一个是小程序的后台管理系统. 因为从一开始就只有我一个人在进行开发,所以自己平 ...
- 【Java】方法
文章目录 何谓方法 方法的定义 方法调用 方法重载 命令行传参 可变参数 递归 何谓方法 System.out.println(),是什么 Java方法是语句的集合,它们在一起执行一个功能 方法是解决 ...
- WebGPU图形编程(1):建立开发环境 <学习引自徐博士教程>
首先感谢徐博士提供的视频教程,我的博客记录也是学习徐博士进行的自我总结,老徐B站学习视频链接网址:WebGPU图形编程 - 免费视频教程(1):建立开发环境_哔哩哔哩_bilibili 创建之前你需要 ...
- 数组的sort()排序
1.sort() 方法用于对数组的元素进行排序,并返回数组.默认排序顺序是根据字符串Unicode码点,也就是你不传参进去的话,默认按字符串Unicode码点来排序,而不是按数字大小来排序 2.arr ...
- MyCms 自媒体 CMS 系统 v2.6,SEO 优化升级
MyCms 是一款基于Laravel开发的开源免费的自媒体博客CMS系统,助力开发者知识技能变现. MyCms 基于Apache2.0开源协议发布,免费且不限制商业使用,欢迎持续关注我们. V2.6 ...
- 巧用 Base62 解决字段太短的问题
最近银联一纸 259 号改造通知,所有支付机构开始改造支付交易,上传终端信息. 不知道其他支付机构的小伙伴针对这次改造是否开始了? 由于这次银联给的时间非常少,我们这边改动涉及到相关上游一起改造,所以 ...