证明不存在 \(01\) 方阵 \(A\) 使得:

\(A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)

证明:

若 \(\exists A\) 满足上述条件。

\(\because A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)

\(\begin{aligned}
\therefore
|A^TA| & =
\begin{vmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{vmatrix}_{22\times22}
\\ & =
\begin{vmatrix}7&2&2&\dots &2\\-5&5&0&\dots&0\\-5&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -5&0&0&\dots&5\end{vmatrix}_{22\times22}
\\ & =
\begin{vmatrix}7+21\times2&2&2&\dots &2\\0&5&0&\dots&0\\0&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&5\end{vmatrix}_{22\times22}
\\ & = 5^{22-1}( 7+21\times 2 )
\\ &= 7^2\times 5^{21}\end{aligned}\)

\(\because |A|^2=|A^T||A|=|A^TA|\)

\(\therefore |A|=\pm\sqrt{|A^TA|}=\pm7\times5^{10}\sqrt{5}\)

\(\because A\) 为 \(01\) 矩阵。

\(\therefore |A|\in \mathbb{Z}\)

\(\because \pm7\times5^{10}\sqrt{5}\notin \mathbb{Z}\)

\(\therefore\) 假设不成立,即 \(\nexists A\) 满足上述条件,原命题得证。

可以推出一个结论:

不存在 \(01\) 方阵 \(A\) 使得:

\(A^TA=\begin{pmatrix}r&\lambda&\dots &\lambda\\\lambda&r&\dots&\lambda\\ \vdots&\vdots&\ddots&\vdots\\ \lambda&\lambda&\dots&r\end{pmatrix}_{v\times v}\)

\((r,\lambda\in\mathbb{Z},v\in\mathbb{N^+},2|v,\sqrt{r-\lambda}\notin \mathbb{N})\)

BIBD&SBIBD的矩阵题的更多相关文章

  1. Codeforces 矩阵题 题单

    Matrix CF 166E Tetrahedron dp方程设为 f[i] 最后在 D点,g[i] 表示最后不在D点.最后 g[] 可以通过矩阵加速数列求得,数据可以强化,复杂度 \(O(logn) ...

  2. leetcode刷题-59螺旋矩阵2

    题目 给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 思路 与螺旋矩阵题完全一致 实现 class Solution: def generateM ...

  3. POJ3070矩阵快速幂简单题

    题意:       求斐波那契后四位,n <= 1,000,000,000. 思路:        简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...

  4. ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)

    题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...

  5. 【BZOJ1048】 [HAOI2007]分割矩阵

    [BZOJ1048][HAOI2007]分割矩阵 题面 bzoj 洛谷 题解 \(dp[a][b][c][d][num]\)表示将矩形\((a,b,c,d)\)分成\(num\)个的最小方差,然后转移 ...

  6. POJ3150—Cellular Automaton(循环矩阵)

    题目链接:http://poj.org/problem?id=3150 题目意思:有n个数围成一个环,现在有一种变换,将所有距离第i(1<=i<=n)个数小于等于d的数加起来,对m取余,现 ...

  7. LeetCode刷题总结-数组篇(中)

    本文接着上一篇文章<LeetCode刷题总结-数组篇(上)>,继续讲第二个常考问题:矩阵问题. 矩阵也可以称为二维数组.在LeetCode相关习题中,作者总结发现主要考点有:矩阵元素的遍历 ...

  8. Java实现 LeetCode 519 随机翻转矩阵

    519. 随机翻转矩阵 题中给出一个 n 行 n 列的二维矩阵 (n_rows,n_cols),且所有值被初始化为 0.要求编写一个 flip 函数,均匀随机的将矩阵中的 0 变为 1,并返回该值的位 ...

  9. JavasScript实现调查问卷插件

    原文:JavasScript实现调查问卷插件 鄙人屌丝程序猿一枚,闲来无事,想尝试攻城师是感觉,于是乎搞了点小玩意.用js实现调查问卷,实现了常规的题型,单选,多选,排序,填空,矩阵等. 遂开源贴出来 ...

随机推荐

  1. win命令

    netstat -nao | findstr "8888"taskkill /pid 15064 /f清理端口被占用win+r进入cmdcmd窗口中输入notepad进入记事本sh ...

  2. promise小案例

    页面中有个板块,需要多张图片加载完之后才能进行显示 //页面中有个板块 需要多张图片加载完之后才能进行显示 const loadImg = (src) => { return new Promi ...

  3. 在Raspberry Pi 3B+上安装Windows 10 IoT

    下载 进入树莓派下载页面,当前网址https://www.raspberrypi.org/downloads/ 选择Windows 10 IoT Core,当前网址https://docs.micro ...

  4. JavaWeb中表单数据的获取及乱码问题

    首先使用一个用户提交界面作为举例(文本框,密码框,选择,下拉表单等),效果如下 注:HTML < form> 标签的 action 属性,其定义和用法是: 属性值为URL,表示向何处发送表 ...

  5. 单片机学习(十一)I2C总线和AT24C02的使用

    一. 存储器介绍 存储器分类图 1. RAM 这类存储器中的数据都是掉电即失的,例如计算机中的内存就是DRAM,但它们数据读写速度都是要比ROM要快得多的. SRAM:本质是电路,使用电路构成的触发器 ...

  6. Hamcrest 断言框架

    Hamcrest是一个为了测试为目的,能组合成灵活表达式的匹配器类库.用于编断言的框架,使用这个框架编写断言,提高可读性及开发测试的效率,提供了大量"匹配器"方法,每个匹配器用于执 ...

  7. Spring全自动AOP和项目加入jar包

    一.jar可以引进项目中,复制到路下后,要add as library,加载到工作空间中才能引入: 也jar包放在硬盘的项目目录外面,可以多个项目引入共用: 二.xml配置 1.aop全自动配置 2. ...

  8. PTA面向对象程序设计6-3 面积计算器(函数重载)

    实现一个面积计算器,它能够计算矩形或长方体的面积. 函数接口定义: int area(int x, int y); int area(int x, int y, int z); 第一个函数计算长方形的 ...

  9. 【Python】python 2.7.16 x64 百度网盘

    倒霉官网下载太慢,下好了分享出来,也给自己留一个备份. 链接:点这里提取码:znaf PS: py2.7版本 for win 64位

  10. PHP的命令行扩展Readline相关函数学习

    PHP 作为一个 Web 开发语言,相对来说,命令行程序并不是它的主战场.所以很多年轻的 PHP 开发者可能连命令行脚本都没有写过,更别提交互式的命令操作了.而今天,我们带来的这个扩展就是针对 PHP ...