BIBD&SBIBD的矩阵题
证明不存在 \(01\) 方阵 \(A\) 使得:
\(A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)
证明:
若 \(\exists A\) 满足上述条件。
\(\because A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)
\(\begin{aligned}
\therefore
|A^TA| & =
\begin{vmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{vmatrix}_{22\times22}
\\ & =
\begin{vmatrix}7&2&2&\dots &2\\-5&5&0&\dots&0\\-5&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -5&0&0&\dots&5\end{vmatrix}_{22\times22}
\\ & =
\begin{vmatrix}7+21\times2&2&2&\dots &2\\0&5&0&\dots&0\\0&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&5\end{vmatrix}_{22\times22}
\\ & = 5^{22-1}( 7+21\times 2 )
\\ &= 7^2\times 5^{21}\end{aligned}\)
\(\because |A|^2=|A^T||A|=|A^TA|\)
\(\therefore |A|=\pm\sqrt{|A^TA|}=\pm7\times5^{10}\sqrt{5}\)
\(\because A\) 为 \(01\) 矩阵。
\(\therefore |A|\in \mathbb{Z}\)
\(\because \pm7\times5^{10}\sqrt{5}\notin \mathbb{Z}\)
\(\therefore\) 假设不成立,即 \(\nexists A\) 满足上述条件,原命题得证。
可以推出一个结论:
不存在 \(01\) 方阵 \(A\) 使得:
\(A^TA=\begin{pmatrix}r&\lambda&\dots &\lambda\\\lambda&r&\dots&\lambda\\ \vdots&\vdots&\ddots&\vdots\\ \lambda&\lambda&\dots&r\end{pmatrix}_{v\times v}\)
\((r,\lambda\in\mathbb{Z},v\in\mathbb{N^+},2|v,\sqrt{r-\lambda}\notin \mathbb{N})\)
BIBD&SBIBD的矩阵题的更多相关文章
- Codeforces 矩阵题 题单
Matrix CF 166E Tetrahedron dp方程设为 f[i] 最后在 D点,g[i] 表示最后不在D点.最后 g[] 可以通过矩阵加速数列求得,数据可以强化,复杂度 \(O(logn) ...
- leetcode刷题-59螺旋矩阵2
题目 给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 思路 与螺旋矩阵题完全一致 实现 class Solution: def generateM ...
- POJ3070矩阵快速幂简单题
题意: 求斐波那契后四位,n <= 1,000,000,000. 思路: 简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- 【BZOJ1048】 [HAOI2007]分割矩阵
[BZOJ1048][HAOI2007]分割矩阵 题面 bzoj 洛谷 题解 \(dp[a][b][c][d][num]\)表示将矩形\((a,b,c,d)\)分成\(num\)个的最小方差,然后转移 ...
- POJ3150—Cellular Automaton(循环矩阵)
题目链接:http://poj.org/problem?id=3150 题目意思:有n个数围成一个环,现在有一种变换,将所有距离第i(1<=i<=n)个数小于等于d的数加起来,对m取余,现 ...
- LeetCode刷题总结-数组篇(中)
本文接着上一篇文章<LeetCode刷题总结-数组篇(上)>,继续讲第二个常考问题:矩阵问题. 矩阵也可以称为二维数组.在LeetCode相关习题中,作者总结发现主要考点有:矩阵元素的遍历 ...
- Java实现 LeetCode 519 随机翻转矩阵
519. 随机翻转矩阵 题中给出一个 n 行 n 列的二维矩阵 (n_rows,n_cols),且所有值被初始化为 0.要求编写一个 flip 函数,均匀随机的将矩阵中的 0 变为 1,并返回该值的位 ...
- JavasScript实现调查问卷插件
原文:JavasScript实现调查问卷插件 鄙人屌丝程序猿一枚,闲来无事,想尝试攻城师是感觉,于是乎搞了点小玩意.用js实现调查问卷,实现了常规的题型,单选,多选,排序,填空,矩阵等. 遂开源贴出来 ...
随机推荐
- 1TB是多大?
TB是计算机的存储单位,用来描述计算机的存储容量.另外还有GB.MB.KB.B.就像长度单位米.分米.厘米.毫米一样,它们之间有换算关系: 1KB = 1024B 1M = 1024KB 1GB = ...
- 前端使用a标签启动本地.exe程序
目录 1,需求 2,效果图 3,实现原理 4,代码 5,注意事项 1,需求 最近有一个需求,在web页面上有一个按钮,点击按钮,调起本地的.exe程序客户端,我在网上找了很多,感觉都不完整,所以自己总 ...
- Python之pyyaml模块
pyyaml模块在python中用于处理yaml格式数据,主要使用yaml.safe_dump().yaml.safe_load()函数将python值和yaml格式数据相互转换.当然也存在yaml. ...
- GDAL 矢量裁剪栅格
本节将介绍如何在Python中用GDAL实现根据矢量边界裁剪栅格数据. from osgeo import gdal, gdal_array import shapefile import numpy ...
- 20210720 noip21
又是原题,写下题解吧 Median 首先时限有 2s(学校评测机太烂,加到 4s 了),可以放心地筛 \(1e7\) 个质数并算出 \(s_2\),然后问题变为类似滑动求中位数.发现 \(s_2\) ...
- 样式和模板快速入门Style,Template
http://www.cnblogs.com/jv9/archive/2010/04/14/1711520.html 样式(Style)和模板(Template)的定义 在Silverlight中,样 ...
- [转]SpringBoot系列——花里胡哨的banner.txt
Creating ASCII Text Banners from the Linux Command Line In Ubuntu, Debian, Linux Mint etc. $ sudo ap ...
- 2020ICPC沈阳站C题 Mean Streets of Gadgetzan
大致题意 原题链接 翻译 \(有n个逻辑变量 请你分别对它们赋值 使其满足m个命题\) \(命题有四种格式:\) 单独数字x 表示第x个逻辑变量为真 ! + 数字x 表示第x个逻辑变量为假 若干个数字 ...
- Docker系列(24)- 实战:DockerFile制作tomcat镜像
实战:DockerFile制作tomcat镜像 step-1 准备镜像文件 tomcat压缩包,jdk压缩包! step-2 编写dockerfile文件,官方命名Dockerfile,build会自 ...
- Java项目常用的统一返回跟统一异常处理
先创建一个crud的项目. controller调用service调用mapper 以下以简单代码代替 controller @GetMapping("/getUserById") ...