BIBD&SBIBD的矩阵题
证明不存在 \(01\) 方阵 \(A\) 使得:
\(A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)
证明:
若 \(\exists A\) 满足上述条件。
\(\because A^TA=\begin{pmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{pmatrix}_{22\times22}\)
\(\begin{aligned}
\therefore
|A^TA| & =
\begin{vmatrix}7&2&\dots &2\\2&7&\dots&2\\ \vdots&\vdots&\ddots&\vdots\\ 2&2&\dots&7\end{vmatrix}_{22\times22}
\\ & =
\begin{vmatrix}7&2&2&\dots &2\\-5&5&0&\dots&0\\-5&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ -5&0&0&\dots&5\end{vmatrix}_{22\times22}
\\ & =
\begin{vmatrix}7+21\times2&2&2&\dots &2\\0&5&0&\dots&0\\0&0&5&\dots&0\\ \vdots&\vdots&\vdots&\ddots&\vdots\\ 0&0&0&\dots&5\end{vmatrix}_{22\times22}
\\ & = 5^{22-1}( 7+21\times 2 )
\\ &= 7^2\times 5^{21}\end{aligned}\)
\(\because |A|^2=|A^T||A|=|A^TA|\)
\(\therefore |A|=\pm\sqrt{|A^TA|}=\pm7\times5^{10}\sqrt{5}\)
\(\because A\) 为 \(01\) 矩阵。
\(\therefore |A|\in \mathbb{Z}\)
\(\because \pm7\times5^{10}\sqrt{5}\notin \mathbb{Z}\)
\(\therefore\) 假设不成立,即 \(\nexists A\) 满足上述条件,原命题得证。
可以推出一个结论:
不存在 \(01\) 方阵 \(A\) 使得:
\(A^TA=\begin{pmatrix}r&\lambda&\dots &\lambda\\\lambda&r&\dots&\lambda\\ \vdots&\vdots&\ddots&\vdots\\ \lambda&\lambda&\dots&r\end{pmatrix}_{v\times v}\)
\((r,\lambda\in\mathbb{Z},v\in\mathbb{N^+},2|v,\sqrt{r-\lambda}\notin \mathbb{N})\)
BIBD&SBIBD的矩阵题的更多相关文章
- Codeforces 矩阵题 题单
Matrix CF 166E Tetrahedron dp方程设为 f[i] 最后在 D点,g[i] 表示最后不在D点.最后 g[] 可以通过矩阵加速数列求得,数据可以强化,复杂度 \(O(logn) ...
- leetcode刷题-59螺旋矩阵2
题目 给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵. 思路 与螺旋矩阵题完全一致 实现 class Solution: def generateM ...
- POJ3070矩阵快速幂简单题
题意: 求斐波那契后四位,n <= 1,000,000,000. 思路: 简单矩阵快速幂,好久没刷矩阵题了,先找个最简单的练练手,总结下矩阵推理过程,其实比较简单,关键 ...
- ZZNU 2182 矩阵dp (矩阵快速幂+递推式 || 杜教BM)
题目链接:http://47.93.249.116/problem.php?id=2182 题目描述 河神喜欢吃零食,有三种最喜欢的零食,鱼干,猪肉脯,巧克力.他每小时会选择一种吃一包. 不幸的是,医 ...
- 【BZOJ1048】 [HAOI2007]分割矩阵
[BZOJ1048][HAOI2007]分割矩阵 题面 bzoj 洛谷 题解 \(dp[a][b][c][d][num]\)表示将矩形\((a,b,c,d)\)分成\(num\)个的最小方差,然后转移 ...
- POJ3150—Cellular Automaton(循环矩阵)
题目链接:http://poj.org/problem?id=3150 题目意思:有n个数围成一个环,现在有一种变换,将所有距离第i(1<=i<=n)个数小于等于d的数加起来,对m取余,现 ...
- LeetCode刷题总结-数组篇(中)
本文接着上一篇文章<LeetCode刷题总结-数组篇(上)>,继续讲第二个常考问题:矩阵问题. 矩阵也可以称为二维数组.在LeetCode相关习题中,作者总结发现主要考点有:矩阵元素的遍历 ...
- Java实现 LeetCode 519 随机翻转矩阵
519. 随机翻转矩阵 题中给出一个 n 行 n 列的二维矩阵 (n_rows,n_cols),且所有值被初始化为 0.要求编写一个 flip 函数,均匀随机的将矩阵中的 0 变为 1,并返回该值的位 ...
- JavasScript实现调查问卷插件
原文:JavasScript实现调查问卷插件 鄙人屌丝程序猿一枚,闲来无事,想尝试攻城师是感觉,于是乎搞了点小玩意.用js实现调查问卷,实现了常规的题型,单选,多选,排序,填空,矩阵等. 遂开源贴出来 ...
随机推荐
- SpringBoot 优雅配置跨域多种方式及Spring Security跨域访问配置的坑
前言 最近在做项目的时候,基于前后端分离的权限管理系统,后台使用 Spring Security 作为权限控制管理, 然后在前端接口访问时候涉及到跨域,但我怎么配置跨域也没有生效,这里有一个坑,在使用 ...
- The Second Week lucklyzpp
The Second Week 文件通配符模式 在Linux系统中预定义的字符类 1.显示/etc目录下,以非字母开头,后面跟了一个字母以及其它任意长度任意字符的文件或目录 2.复制/etc目录下 ...
- python 实用技巧:几十行代码将照片转换成素描图、随后打包成可执行文件(源码分享)
效果展示 原始效果图 素描效果图 相关依赖包 # 超美观的打印库 from pprint import pprint # 图像处理库 from PIL import Image # 科学计算库 imp ...
- 前缀和的n个神奇操作
前情回顾 前缀和的基础用法戳这里->传送门 众所周知,简单的前缀和解决的一般都是静态查询的问题,例如区间和.区间积等 操作的时候也很简单,就是根据需要来维护一个数组,每次查询的时候就用到tr[r ...
- HCNP Routing&Switching之OSPF LSA更新规则和路由汇总
前文我们了解了OSPF外部路由类型以及forwarding address字段的作用,回顾请参考https://www.cnblogs.com/qiuhom-1874/p/15225673.html: ...
- thymeleaf+layui加载页面渲染时报错
将freemaker替换成thymeleaf时出现以下问题: org.thymeleaf.exceptions.TemplateProcessingException: Could not parse ...
- 云原生 AI 前沿:Kubeflow Training Operator 统一云上 AI 训练
分布式训练与 Kubeflow 当开发者想要讲深度学习的分布式训练搬上 Kubernetes 集群时,首先想到的往往就是 Kubeflow 社区中形形色色的 operators,如 tf-operat ...
- WEB漏洞——SQL
由于我的博客是学到渗透的时候才做的,没有关于WEB漏洞的笔记,现在发现WEB层面的漏洞有些不太熟悉了,边写一下笔记边复习一下,就从sql注入开始吧 话不多说先上大佬写的表[ctfhub]SQL注入 - ...
- Spring Boot入门系列(二十六)超级简单!Spring Data JPA 的使用!
之前介绍了Mybatis数据库ORM框架,也介绍了使用Spring Boot 的jdbcTemplate 操作数据库.其实Spring Boot 还有一个非常实用的数据操作框架:Spring Data ...
- 分组概念&贪婪与懒惰
分组概念&贪婪与懒惰 1.分组 2.贪婪和懒惰 3.懒惰 4.处理选项 5.实例:百度搜索结果页面源码中获取当前页的10个标题 5.1页面源码分析规律 5.2正则表达式,匹配出10个标题 这是 ...