ACM

#include <bits/stdc++.h>
using namespace std;
const int maxn = 1010;
char S[maxn];
int dp[maxn][maxn]; int main()
{
gets(S);
int len = strlen(S), ans = 1;
memset(dp, 0, sizeof(dp));
for (int i = 0; i < len; i++)
{
dp[i][i] = 1;
if (i < len - 1)
{
if (S[i] == S[i + 1])
{
dp[i][i + 1] = 1;
ans = 2;
}
}
}
// 状态转移方程
for (int L = 3; L <= len; L++)
{
for (int i = 0; i + L - 1 < len; i++)
{
int j = i + L - 1;
if (S[i] == S[j] && dp[i + 1][j - 1] == 1)
{
dp[i][j] = 1;
ans = L;
}
}
}
cout << ans;
system("pause");
}

核心代码

#include <bits/stdc++.h>
using namespace std; class Solution
{
public:
int getLongestPalindrome(string A, int n)
{
int maxR = 1;
// 创建dp数组
vector<vector<int>> dp;
vector<int> tmp;
tmp.insert(tmp.begin(), n, 0);
for (int i = 0; i < n; i++)
{
dp.push_back(tmp);
}
// 边界条件
for (int i = 0; i < n; i++)
{
dp[i][i] = 1;
if (i < n - 1)
{
if (A[i] == A[i + 1])
{
dp[i][i + 1] = 1;
maxR = 2;
}
}
}
// 状态转移
for (int len = 3; len <= n; len++)
{
// 枚举左端点i
for (int i = 0; i + len - 1 < n; i++)
{
int j = i + len - 1;
if (A[i] == A[j] && dp[i + 1][j - 1] == 1)
{
dp[i][j] = 1;
maxR = len;
}
}
}
return maxR;
}
}; int main()
{
string str;
cin >> str;
int n = str.length();
Solution solution;
cout << solution.getLongestPalindrome(str, n) << endl;
system("pause");
}

【C++】最长回文子串/动态规划的更多相关文章

  1. leetcode-5 最长回文子串(动态规划)

    题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...

  2. 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  3. 【LeetCode】最长回文子串【动态规划或中心扩展】

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...

  4. Leetcode(5)-最长回文子串(包含动态规划以及Manacher算法)

    给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &quo ...

  5. [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)

    最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...

  6. [译]最长回文子串(Longest Palindromic Substring) Part I

    [译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...

  7. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  8. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  9. 最长回文子串(Longest Palindromic Substring)-DP问题

    问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串 ...

随机推荐

  1. 什么?还在用delete删除数据《死磕MySQL系列 九》

    系列文章 五.如何选择普通索引和唯一索引<死磕MySQL系列 五> 六.五分钟,让你明白MySQL是怎么选择索引<死磕MySQL系列 六> 七.字符串可以这样加索引,你知吗?& ...

  2. 升级npm后版本依然没有变 原来是全局npm设置的锅

    最近准备给家里的老爷机打一个 react 的环境 win7系统还不算老~ 不过!由于很多年以前装的node了版本很低,所以赶紧去官网 下了一个 最新的稳定版本的. 卸载和安装都费了老大力了. 以为光明 ...

  3. b站个人直播年报【大爽歌作】 介绍与演示

    大家好,我是大爽,一个b站UP主兼主播. 最近做了一个b站直播个人年报,该年报为代码文件生成. 且代码已打包到一个可视化工具中(exe)只需两步就可以获得自己的专属年报. 代码已上传到我的github ...

  4. go微服务框架Kratos笔记(一)入门教程

    kratos简介 Kratos 一套轻量级 Go 微服务框架,包含大量微服务相关功能及工具 本文基于kratos v2.0.3,windows平台,其他系统平台均可借鉴参考 环境搭建 Golang开发 ...

  5. [loj3302]信号传递

    由于n较大,可以将n个数中的关系对数量记录在$m*m$的矩阵中,记作$a[i][j]$ 考虑朴素的状压dp枚举排列,即$f[i]$表示以i中的数的一种排列为整个序列的前缀的最小代价,然后转移枚举下一个 ...

  6. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

  7. 【Microsoft Azure 的1024种玩法】七.Azure云端搭建部署属于自己的维基百科

    [简介] MediaWiki是全球最著名的开源wiki程序,运行于PHP+MySQL环境.MediaWiki从2002年2月25日被作为维基百科全书的系统软件,并有大量其他应用实例.MediaWiki ...

  8. [APIO2020]有趣的旅途

    注意到第一个点是可以钦定的. 那么我们考虑在重心的子树里反复横跳. 每次选择不同子树里的深度最大的点. 在同一颗子树里可能会在lca处出现问题. 那么我们选择重心,要考虑到会不会出现一颗子树不够选的操 ...

  9. GWAS分析结果中pvalue/p.ajust为0时如何处理?

    在GWAS分析的结果中,偶尔会遇到到pvalue为0的SNP位点,这时如果直接做曼哈顿或QQ图,会出错,因为log0无意义. 此时,该如何处理? 如果你用的是Plink1.9来做的GWAS,可加一个参 ...

  10. 面向对象编程—self,继承

    目录 1. self 2. init 2.1 使用方式 2.2 init()方法的调用 2.3 总结 3. 继承 3.1 继承的概念 3.2 继承示例 3.2.1 说明 3.3 总结 3.4 多继承 ...