【C++】最长回文子串/动态规划
ACM
#include <bits/stdc++.h>
using namespace std;
const int maxn = 1010;
char S[maxn];
int dp[maxn][maxn];
int main()
{
gets(S);
int len = strlen(S), ans = 1;
memset(dp, 0, sizeof(dp));
for (int i = 0; i < len; i++)
{
dp[i][i] = 1;
if (i < len - 1)
{
if (S[i] == S[i + 1])
{
dp[i][i + 1] = 1;
ans = 2;
}
}
}
// 状态转移方程
for (int L = 3; L <= len; L++)
{
for (int i = 0; i + L - 1 < len; i++)
{
int j = i + L - 1;
if (S[i] == S[j] && dp[i + 1][j - 1] == 1)
{
dp[i][j] = 1;
ans = L;
}
}
}
cout << ans;
system("pause");
}
核心代码
#include <bits/stdc++.h>
using namespace std;
class Solution
{
public:
int getLongestPalindrome(string A, int n)
{
int maxR = 1;
// 创建dp数组
vector<vector<int>> dp;
vector<int> tmp;
tmp.insert(tmp.begin(), n, 0);
for (int i = 0; i < n; i++)
{
dp.push_back(tmp);
}
// 边界条件
for (int i = 0; i < n; i++)
{
dp[i][i] = 1;
if (i < n - 1)
{
if (A[i] == A[i + 1])
{
dp[i][i + 1] = 1;
maxR = 2;
}
}
}
// 状态转移
for (int len = 3; len <= n; len++)
{
// 枚举左端点i
for (int i = 0; i + len - 1 < n; i++)
{
int j = i + len - 1;
if (A[i] == A[j] && dp[i + 1][j - 1] == 1)
{
dp[i][j] = 1;
maxR = len;
}
}
}
return maxR;
}
};
int main()
{
string str;
cin >> str;
int n = str.length();
Solution solution;
cout << solution.getLongestPalindrome(str, n) << endl;
system("pause");
}
【C++】最长回文子串/动态规划的更多相关文章
- leetcode-5 最长回文子串(动态规划)
题目要求: * 给定字符串,求解最长回文子串 * 字符串最长为1000 * 存在独一无二的最长回文字符串 求解思路: * 回文字符串的子串也是回文,比如P[i,j](表示以i开始以j结束的子串)是回文 ...
- 5. Longest Palindromic Substring(最长回文子串 manacher 算法/ DP动态规划)
Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...
- 【LeetCode】最长回文子串【动态规划或中心扩展】
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1: 输入: "babad"输出: "bab"注意: " ...
- Leetcode(5)-最长回文子串(包含动态规划以及Manacher算法)
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为1000. 示例 1: 输入: "babad" 输出: "bab" 注意: &quo ...
- [LeetCode] 5. 最长回文子串 ☆☆☆(最长子串、动态规划)
最长回文子串 (动态规划法.中心扩展算法) https://leetcode-cn.com/problems/longest-palindromic-substring/solution/xiang- ...
- [译]最长回文子串(Longest Palindromic Substring) Part I
[译]最长回文子串(Longest Palindromic Substring) Part I 英文原文链接在(http://leetcode.com/2011/11/longest-palindro ...
- LeetCode:Longest Palindromic Substring 最长回文子串
题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...
- lintcode :Longest Palindromic Substring 最长回文子串
题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...
- 最长回文子串(Longest Palindromic Substring)-DP问题
问题描述: 给定一个字符串S,找出它的最大的回文子串,你可以假设字符串的最大长度是1000,而且存在唯一的最长回文子串 . 思路分析: 动态规划的思路:dp[i][j] 表示的是 从i 到 j 的字串 ...
随机推荐
- Apache Kyuubi 在 T3 出行的深度实践
支撑了80%的离线作业,日作业量在1W+ 大多数场景比 Hive 性能提升了3-6倍 多租户.并发的场景更加高效稳定 T3出行是一家基于车联网驱动的智慧出行平台,拥有海量且丰富的数据源.因为车联网数据 ...
- 菜鸡的Java笔记 第二十三 - java 抽象类的概念
abstractClass 抽象类的概念 1.抽象类的基本定义 2.抽象类的使用原则 不会抽象类与接口,java = 没学 ...
- [cf1290D]Coffee Varieties
思路 统计数的种类数,也等价于统计有多少个数满足其之前没有与其相同的数 将序列以$\frac{k}{2}$为块大小分块,那么即会有$m=\frac{2n}{k}$个块 (关于$k=1$的情况,以1为块 ...
- [luogu6185]序列
对于2操作,如果把这些操作看成边,那么对于某一个连通块内的若干个点,满足权值可以任意分配(证明:归纳,若n个点可以,那么先将新增的点调整好,再对原来n个点重新分配即可),因此可以将原图缩点,并将连通块 ...
- 洛谷 P6672 - [清华集训2016] 你的生命已如风中残烛(组合数学)
洛谷题面传送门 题解里一堆密密麻麻的 Raney 引理--蒟蒻表示看不懂,因此决定写一篇题解提供一个像我这样的蒟蒻能理解的思路,或者说,理解方式. 首先我们考虑什么样的牌堆顺序符合条件.显然,在摸牌任 ...
- Atcoder Regular Contst 084 D - XorShift(bitset)
洛谷题面传送门 & Atcoder 题面传送门 没错,这就是 Small Multiple 那场的 F,显然这种思维题对我来说都是不可做题/cg/cg/cg 首先如果我们把每个二进制数看作一个 ...
- Atcoder Regular Contest 096 C - Everything on It(组合数学)
Atcoder 题面传送门 & 洛谷题面传送门 简单题,由于这场 arc 的 F 是 jxd 作业而我不会做,所以只好来把这场的 E 水掉了. 我们记 \(f(i)\) 为钦定 \(i\) 个 ...
- CF1466G Song of the Sirens
题目传送门 题意简述:给出 \(n,s_0,t\ (n=|t|)\),定义 \(s_i=s_{i-1}+t_i+s_{i-1}\).多次询问给出 \(k,m\),求 \(m\) 在 \(s_k\) 中 ...
- 从 [P4240 毒瘤之神的考验] 谈 OI 中的美学
感觉这题真的特别有意思,涉及了 OI 中很多非常有意思.非常美的手法,比如--平衡两部分的时间复杂度.\(n \ln n\) 的那个 Trick等等,真的一种暴力的美学. 题目大意: 多组询问,求 \ ...
- R语言与医学统计图形-【20】ggplot2图例
ggplot2绘图系统--图例:guide函数.标度函数.overrides.aes参数 图例调整函数guide_legend也属于标度函数,但不能单独作为对象使用,即不能如p+guide_legen ...