注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6815920501530034696/

承接上一篇文档《Spark词频前十的统计练习

Spark on standalone

类似于yarn的一个集群资源管理框架,spark自带的

yarn

ResourceManager(进程)

管理和调度集群资源,主要包括:申请、调度、监控

NodeManager(进程)

管理当前节点的资源,以及启动container资源:CPU和内存(CPU决定快慢,内存决定生死)

注意:一台机器只允许有一个NodeManager

standalone

Master:(进程)

管理集群资源,主要包括:申请、调度、监控

Worker:(进程)

当前进程允许分配的资源进行管理,包括资源的管理以及executor的启动资源:CPU和内存(CPU决定快慢,内存决定生死)

注意:一台机器允许有多个Worker进程

Standalone集群的配置

前提:spark的本地执行环境已经配置好了

  1. 修改${SPARK_HOME}/conf/spark-env.sh
SPARK_MASTER_HOST=域名和ip
SPARK_MASTER_PORT=7070
SPARK_MASTER_WEBUI_PORT=8080
SPARK_WORKER_CORES=2//指定当前机器上的每个worker进程允许分配的逻辑CPU核数
SPARK_WORKER_MEMORY=2g//指定当前机器上的每个worker允许分配的内存大小(可以认为是逻辑内存)
SPARK_WORKER_PORT=7071
SPARK_WORKER_WEBUI_PORT=8081
SPARK_WORKER_INSTANCES=2//指定当前机器上的Worker的数量

2. 配置Worker节点所在机器,在conf目录中

cp slaves.template slaves

修改slaves

备注:一行一个机器的主机名(Worker进程所在的机器的hostname)

3. 额外:完全分布式配置(此处可不配置了解即可)

只需要在slaves文件中添加slave从节点的hostname即可(前提是ssh、hostname和ip映射等hadoop的依赖环境均已完成),然后将修改好的spark的安装包copy到其他的slave机器上即可完成分布式的安装

4. 启动服务

4.1 启动主节点

./sbin/start-master.sh
访问WEBUI:http://master:8080/

4.2 启动从节点(Worker)

./sbin/start-slave.sh spark://master:7070

4.3 关闭所有服务

./sbin/stop-all.sh

4.5 启动所有服务

./sbin/start-all.sh

注意:启动和关闭所有服务的前提是由ssh免秘钥登录

5. 简单查看/测试

5.1 jps查看Master和Worker进程

5.2 查看WEBUI界面:http://master:8080/

5.3 ./bin/spark-shell --help--》查看帮助命令

./bin/spark-shell --master spark://master:7070
val result1 = sc.textFile("file:///opt/modules/spark/README.md").flatMap(_.split(" ")).filter(_.nonEmpty).map((_,1)).reduceByKey(_+_).collect

如果看到collect有结果,表示我们的standalone搭建完成

Spark StandAlone集群的HA配置

1. Single-Node Recovery with Local File System --基于文件系统的单节点恢复

在spark-env.sh配置

SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=FILESYSTEM -Dspark.deploy.recoveryDirectory=/user/spark/tmp"
spark.deploy.recoveryDirectory --> 保存恢复状态的一个目录

2. Standby Masters with ZooKeeper --基于Zookeeper的Master的HA机制

SPARK_DAEMON_JAVA_OPTS="-Dspark.deploy.recoveryMode=ZOOKEEPER -Dspark.deploy.zookeeper.url=hadoop01:2181,hadoop02:2181,hadoop03:2181 -Dspark.deploy.zookeeper.dir=/spark-ha"

假设有三台机器

hadoop01MasterSPARK_MASTER_HOST=hadoop01
hadoop02Master(standby) SPARK_MASTER_HOST=hadoop02
hadoop03SPARK_MASTER_HOST=hadoop02

启动Master,在hadoop01上用 start-all.sh(hadoop01:8080)

再在hadoop02上面单独启动Master start-master.sh (自动成为StandBy的状态hadoop02:8080)

Spark应用的监控

如果运行

页面就会变化

如果关掉shell,页面就不存在了

官网:http://spark.apache.org/docs/2.0.2/monitoring.html

给了监控方法

  1. 针对我们正在运行的Spark应用,可以通过WEB界面监控,默认端口号是4040,如果4040被占用,就会依次进行端口递增(也是有次数限制的),
spark.ui.port=4050 --4051 4052

2. 如果应用已经执行完成了,那可以spark的job history server服务来看

MapReduce的job history server

(1). 开启日志聚集功能

(2). 日志上传到HDFS的文件夹路径

(3). 启动mr的job history服务(读取HDFS的日志文件,并进行展示)

Spark的job history server

(1). 在HDFS上创建spark应用日志存储路径

./bin/hdfs dfs -mkdir -p /spark/history

(2). 修改配置文件spark-default.conf

spark.eventLog.enabled true
spark.eventLog.dir hdfs://master:8020/spark /history

(3). 配置Spark的job history server

spark-env.sh

SPARK_HISTORY_OPTS="-Dspark.history.fs.logDirectory=hdfs://master:8020/spark/history-Dspark.history.ui.port=18080"

(4). 启动spark的job history server

http:/master:18080/api/v1/applications

查看Jps

Web的地址查看,注意18080

这里出现了一个错误18080可以访问但没有内容

先检查Hadoop是否创建了这个目录

检查路径是否有问题

检查配置文件发现问题所在

经测试后发现:

spark.eventLog.dir:Application在运行过程中所有的信息均记录在该属性指定的路径下;

spark.history.fs.logDirectory:Spark History Server页面只展示该指定路径下的信息;

比如:spark.eventLog.dir刚开始时指定的是hdfs://hadoop000:8020/directory,而后修改成hdfs://hadoop000:8020/directory2

那么spark.history.fs.logDirectory如果指定的是hdfs://hadoop000:8020/directory,就只能显示出该目录下的所有Application运行的日志信息;反之亦然。

所有这里修改spark.eventLog.dir为

重启服务即可访问

在页面里可以查看很多信息,比如日志配置路径,未完成的应用等等

Api查询应用

RESTAPI:

http://master:18080/api/v1/applications/local-1533452143143/jobs/0

Standalone集群搭建和Spark应用监控的更多相关文章

  1. 04、Spark Standalone集群搭建

    04.Spark Standalone集群搭建 4.1 集群概述 独立模式是Spark集群模式之一,需要在多台节点上安装spark软件包,并分别启动master节点和worker节点.master节点 ...

  2. Spark集群搭建【Spark+Hadoop+Scala+Zookeeper】

    1.安装Linux 需要:3台CentOS7虚拟机 IP:192.168.245.130,192.168.245.131,192.168.245.132(类似,尽量保持连续,方便记忆) 注意: 3台虚 ...

  3. 【原创 Hadoop&Spark 动手实践 5】Spark 基础入门,集群搭建以及Spark Shell

    Spark 基础入门,集群搭建以及Spark Shell 主要借助Spark基础的PPT,再加上实际的动手操作来加强概念的理解和实践. Spark 安装部署 理论已经了解的差不多了,接下来是实际动手实 ...

  4. ubuntu18.04 flink-1.9.0 Standalone集群搭建

    集群规划 Master JobManager Standby JobManager Task Manager Zookeeper flink01 √ √ flink02 √ √ flink03 √ √ ...

  5. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  6. hadoop 集群搭建 配置 spark yarn 对效率的提升永无止境 Hadoop Volume 配置

    [手动验证:任意2个节点间是否实现 双向 ssh免密登录] 弄懂通信原理和集群的容错性 任意2个节点间实现双向 ssh免密登录,默认在~目录下 [实现上步后,在其中任一节点安装\配置hadoop后,可 ...

  7. 集群搭建之Spark配置要点解析

    注意点: 安装Spark前先要配置好Scala运行环境. Spark和Scala需要在各个机器上配置. 环境变量配置 在~/.bashrc中添加如下的配置信息. #scala conf export ...

  8. Spark集群搭建简要

    Spark集群搭建 1 Spark编译 1.1 下载源代码 git clone git://github.com/apache/spark.git -b branch-1.6 1.2 修改pom文件 ...

  9. Spark集群搭建(local、standalone、yarn)

    Spark集群搭建 local本地模式 下载安装包解压即可使用,测试(2.2版本)./bin/spark-submit --class org.apache.spark.examples.SparkP ...

随机推荐

  1. 安全刻不容缓「GitHub 热点速览 v.21.50」

    作者:HelloGitHub-小鱼干 本周最热的事件莫过于 Log4j 漏洞,攻击者仅需向目标输入一段代码,不需要用户执行任何多余操作即可触发该漏洞,使攻击者可以远程控制用户受害者服务器,90% 以上 ...

  2. 年度最受欢迎的开源CHROME插件

    又到了年底,时间过得飞快,每到年底就有各种各样的总结各种各样的奖项出来.前几天谷歌就公布了2021年年度最受欢迎Chrome插件名单,名单共有13个. 让很多网友费解的是,其中有很多并不是今年刚出现的 ...

  3. ACwing1212. 地宫取宝

    题目: X 国王有一个地宫宝库,是 n×m 个格子的矩阵,每个格子放一件宝贝,每个宝贝贴着价值标签. 地宫的入口在左上角,出口在右下角. 小明被带到地宫的入口,国王要求他只能向右或向下行走. 走过某个 ...

  4. docker安装artemis

    Dockerfile # Licensed to the Apache Software Foundation (ASF) under one # or more contributor licens ...

  5. Linux(Centos)内存占用过高处理

    查看内存占用最大 ps aux| grep -v "USER" |sort -n -r -k 4 |awk 'NR==1{ print $0}' 命令查看占用内存最大的10个进程 ...

  6. vue-子组件创建/注册/使用流程

    流程分为三步 非单文件组件:(实际不用,因为很麻烦,框架都是多文件组件) 局部注册 1.创建一个组件 const school = Vue.extend({ // 传入配置对象 // 子组件配置对象不 ...

  7. typora 基本使用和漂亮的主题样式

    以下是使用博客园的markdown的效果: typora 基本使用和漂亮的主题样式 一.typora 基本使用 ps:文字排版,使用markdown nice 可以一键复制到公众号.知乎:https: ...

  8. 【LeetCode】1461. 检查一个字符串是否包含所有长度为 K 的二进制子串 Check If a String Contains All Binary Codes of Size K

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 统计长度为 K 的子串个数 日期 题目地址:https ...

  9. 【LeetCode】947. Most Stones Removed with Same Row or Column 解题报告(Python & C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 并查集 日期 题目地址:https://leetco ...

  10. Co-prime(hdu4135)

    Co-prime Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Su ...