【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)
【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)
题面
Description
栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量。在这些植物采集能量后,
栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起。 栋栋的植物种得非常整齐,一共有n列,每列
有m棵,植物的横竖间距都一样,因此对于每一棵植物,栋栋可以用一个坐标(x, y)来表示,其中x的范围是1至n,
表示是在第x列,y的范围是1至m,表示是在第x列的第y棵。 由于能量汇集机器较大,不便移动,栋栋将它放在了
一个角上,坐标正好是(0, 0)。 能量汇集机器在汇集的过程中有一定的能量损失。如果一棵植物与能量汇集机器
连接而成的线段上有k棵植物,则能量的损失为2k + 1。例如,当能量汇集机器收集坐标为(2, 4)的植物时,由于
连接线段上存在一棵植物(1, 2),会产生3的能量损失。注意,如果一棵植物与能量汇集机器连接的线段上没有植
物,则能量损失为1。现在要计算总的能量损失。 下面给出了一个能量采集的例子,其中n = 5,m = 4,一共有20
棵植物,在每棵植物上标明了能量汇集机器收集它的能量时产生的能量损失。 在这个例子中,总共产生了36的能
量损失。
Input
仅包含一行,为两个整数n和m。
Output
仅包含一个整数,表示总共产生的能量损失。
Sample Input
【样例输入1】
5 4
【样例输入2】
3 4
Sample Output
【样例输出1】
36
【样例输出2】
20
对于100%的数据:1 ≤ n, m ≤ 100,000。
题解
观察
对于点对\((i,j)\)而言
中间的点的个数是\(gcd(i,j)-1\)
所以,答案就是
\]
中间的那坨东西很容易可以用莫比乌斯反演解出
所以,总的复杂度是\(O(n\sqrt n)\)
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define MAX 110000
#define ll long long
inline int read()
{
int x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,m;
int tot,pri[MAX];
ll mu[MAX],F[MAX],f[MAX],ans;
bool zs[MAX];
void Mu()
{
zs[1]=mu[1]=1;
for(int i=2;i<=n;++i)
{
if(!zs[i])pri[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&i*pri[j]<=n;++j)
{
zs[i*pri[j]]=true;
if(i%pri[j])mu[i*pri[j]]=-mu[i];
else{mu[i*pri[j]]=0;break;}
}
}
}
int main()
{
n=read();m=read();
if(n>m)swap(n,m);
Mu();
for(int i=1;i<=n;++i)F[i]=1ll*(n/i)*(m/i);
for(int i=1;i<=n;++i)
for(int j=i;j<=n;j+=i)
f[i]+=1ll*mu[j/i]*F[j];
for(int i=1;i<=n;++i)ans+=1ll*f[i]*i;
ans=ans*2-1ll*n*m;
printf("%lld\n",ans);
return 0;
}
【BZOJ2005】【NOI2010】能量采集(莫比乌斯反演,容斥原理)的更多相关文章
- BZOJ2005: [Noi2010]能量采集 莫比乌斯反演的另一种方法——nlogn筛
分析:http://www.cnblogs.com/huhuuu/archive/2011/11/25/2263803.html 注:从这个题收获了两点 1,第一象限(x,y)到(0,0)的线段上整点 ...
- BZOJ2005:[NOI2010]能量采集(莫比乌斯反演,欧拉函数)
Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物采集到的能量汇集到一起. 栋栋的植物种得 ...
- luogu1447 [NOI2010]能量采集 莫比乌斯反演
link 冬令营考炸了,我这个菜鸡只好颓废数学题了 NOI2010能量采集 由题意可以写出式子: \(\sum_{i=1}^n\sum_{j=1}^m(2\gcd(i,j)-1)\) \(=2\sum ...
- BZOJ 2005: [Noi2010]能量采集 [莫比乌斯反演]
题意:\((0,0)\)到\((x,y),\ x \le n, y \le m\)连线上的整点数\(*2-1\)的和 \((0,0)\)到\((a,b)\)的整点数就是\(gcd(a,b)\) 因为. ...
- BZOJ2005 NOI2010 能量采集 【莫比乌斯反演】
BZOJ2005 NOI2010 能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些 ...
- bzoj2005: [Noi2010]能量采集
lsj师兄的题解 一个点(x, y)的能量损失为 (gcd(x, y) - 1) * 2 + 1 = gcd(x, y) * 2 - 1. 设g(i)为 gcd(x, y) = i ( 1 < ...
- [BZOJ2005][Noi2010]能量采集 容斥+数论
2005: [Noi2010]能量采集 Time Limit: 10 Sec Memory Limit: 552 MBSubmit: 4394 Solved: 2624[Submit][Statu ...
- BZOJ 2015:[Noi2010]能量采集(数论+容斥原理)
2005: [Noi2010]能量采集 Description 栋栋有一块长方形的地,他在地上种了一种能量植物,这种植物可以采集太阳光的能量.在这些植物采集能量后,栋栋再使用一个能量汇集机器把这些植物 ...
- BZOJ2005: [Noi2010]能量采集(容斥原理 莫比乌斯反演)
Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 4727 Solved: 2877[Submit][Status][Discuss] Descript ...
- 【莫比乌斯反演】BZOJ2005 [NOI2010]能量采集
Description 求sigma gcd(x,y)*2-1,1<=x<=n, 1<=y<=m.n, m<=1e5. Solution f(n)为gcd正好是n的(x, ...
随机推荐
- tomcat管理授权:tomcat-users.xml
ou are not authorized to view this page. If you have already configured the Manager application to a ...
- 页面刷新方式实时检测cookie是否失效
在浏览器端每隔10秒钟刷新一次页面,可用于检查cookie值是否失效. 在study.php文件中存在这样一条语句: <meta http-equiv="refresh" c ...
- laravel框架学习-缓存,事件
缓存配置:app/config/cache.php 缓存: 增加缓存项: Cache::put( 'key', 'value', $Cachetime ); 在缓存中增加一个不存在 ...
- [php]通过http post发送json数据
function http_post_data($url, $data_string) { $ch = curl_init(); curl_setopt($ch, CURLOPT_POST, 1); ...
- PHP入门学习精要
一.文件名 函数.配置文件等其他类库文件之外的一般是以.php为后缀(第三方引入的不做要求): ThinkPHP的模板文件默认是以.html 为后缀(可以通过配置修改): 二.其它命名 其它命名 规则 ...
- ubuntu17.10 安装firefox的flash
1. flash下载地址:https://get.adobe.com/flashplayer/ 2. 选择tar.gz for linux 3. 下载后解压tar包.里面有个libflashplaye ...
- 对网站视频资源的管控-禁止通过视频的url访问视频
一般静态文件的下载是不经过PHP的,直接由web服务器发送到客户端.但有时候需要实现文件下载的权限控制等功能,这时候就需要经由PHP程序来做权限验证.简单粗暴的做法是,在PHP程序里边先验证权限,验证 ...
- 第十八章 DjangoWeb开发框架
第十八章 DjangoWeb开发框架 第一课 内容概要: 1.JS正则 -登录注册验证 2.组件 1.BootStrap -css -js 学习BootStrap规则 2.jQueryUI -css ...
- RotatedRect 类的用法
RotatedRect 以 Emgu.CV.Structure 为命名空间. 表示带有旋转角度的矩形. 结构说明 普通矩形的基本结构
- 文件无法复制的原因-IT33
Win7系统复制数据至其他硬盘或者是移动存储设备是,有时会发生无法复制文件过大的情况.这里先大致介绍一下硬盘文件系统分为NFTS格式和FAT32格式这两种,其中FAT32仅支持单次移动4G以下容量的数 ...