大于k的部分直接加k
对于小于等于k的cnt个数 ans=cnt*k - Σ(k/i * i)
然后k/i在一段区间内不变,这段区间直接可以数列求和

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} ll n, k, ans; int main(RG int argc, RG char* argv[]){
n = Read(); k = Read();
if(n > k) ans = (n - k) * k, n = k;
ans += n * k;
for(RG ll l = 1, r = n; l <= n; l = r + 1){
r = min(n, k / (k / l));
ans -= (k / l) * (r - l + 1) * (l + r) >> 1;
}
printf("%lld\n", ans);
return 0;
}

[CQOI2007]余数求和的更多相关文章

  1. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  2. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  3. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  4. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  5. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  6. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  7. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  8. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  9. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

随机推荐

  1. (二)异步方法BeginInvoke和EndInvoke

    .Net framework可以让你异步调用任何方法,你可以定义一个与你要调用的方法的签名相同的委托.公共语言运行时将自动为该委托定义与签名相同的BeginInvok和EndInvoke方法. Beg ...

  2. Gitlab的安装与实践

    tucao 先让我来吐槽一下下,使用GitHub以及Bitbucket比较不太稳定,尤其是后者,可以说是极其不稳定,甚至无法克隆仓库到本地.因此,决定安装一款开源且免费的Git服务到自己的服务器主机上 ...

  3. Spring Boot 注解详解

    一.注解(annotations)列表 @SpringBootApplication:包含了@ComponentScan.@Configuration和@EnableAutoConfiguration ...

  4. Yii2 Restful Api 401

    采用Yii2 Restful Api方式为APP提供数据,默认你已经做好了所有的编码和配置工作.采用Postman测试接口: 出现这个画面的一个可能原因是:access_token的写法有误,如果你使 ...

  5. 编程中&和&&的区别

    逻辑电路中用&: 与门电路,全真为真,有假为假. 编程中:&表示取地址符(C)和 按位与(非bool类型时,转换成二进制,按位与运算). &&表示逻辑与运算,& ...

  6. MysqL错误之_ERROR! MySQL server PID file could not be found!

    在配置Mysql主从GTID模式下,启动Mysql服务时出现报错,搜索了一番,找到了一个简单可靠的方法,直接成功.如果遇到相同问题没有解决的童鞋,那就去试一下很多其他方案,如,强制杀掉进程重启,修改其 ...

  7. python——Django项目模板

    views.py # -*- coding: utf-8 -*- from __future__ import unicode_literals from django.shortcuts impor ...

  8. hihoCoder 1523 数组重排2 贪心

    题意:给定一个1-N的排列A1, A2, - AN,每次操作小Hi可以选择一个数,把它放到数组的最左边. 请计算小Hi最少进行几次操作就能使得新数组是递增排列的. 思路:最后的序列是递增的,那么必定满 ...

  9. lower_bound()返回值

    lower_bound()函数实现功能就是二分查找,函数lower_bound()在first和last中的前闭后开区间进行二分查找,返回大于或等于val的第一个元素位置.如果所有元素都小于val,则 ...

  10. vim使用教程

    vim的学习曲线相当的大(参看各种文本编辑器的学习曲线),所以,如果你一开始看到的是一大堆VIM的命令分类,你一定会对这个编辑器失去兴趣的.下面的文章翻译自<Learn Vim Progress ...