大于k的部分直接加k
对于小于等于k的cnt个数 ans=cnt*k - Σ(k/i * i)
然后k/i在一段区间内不变,这段区间直接可以数列求和

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} ll n, k, ans; int main(RG int argc, RG char* argv[]){
n = Read(); k = Read();
if(n > k) ans = (n - k) * k, n = k;
ans += n * k;
for(RG ll l = 1, r = n; l <= n; l = r + 1){
r = min(n, k / (k / l));
ans -= (k / l) * (r - l + 1) * (l + r) >> 1;
}
printf("%lld\n", ans);
return 0;
}

[CQOI2007]余数求和的更多相关文章

  1. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  2. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  3. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  4. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  5. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  6. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  7. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  8. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  9. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

随机推荐

  1. [Python Study Notes] 编程仪式感的Hello World!

    学习还是要有一点仪式感的,学单片机第一步,点个灯:学编程第一步,hello world! C:\Users\Liu>python Python 3.6.4 (v3.6.4:d48eceb, De ...

  2. golang验证提交的数据中某个字段是否重复

    提交的json数据如下: { , , , ", , , "screen_mode": "3,2", , "ad_plats":[ ...

  3. 脚本实现centos7修改二块网卡名称并配置ip信息

    #!/bin/bash interface1=`ls /sys/class/net|grep en|awk 'NR==1{print}'`interface2=`ls /sys/class/net|g ...

  4. [SCOI2009][bzoj1025]游戏

    [SCOI2009][bzoj1025]游戏 标签: DP 置换 题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题解 很套路的题目 ...

  5. qemu-trustzone编译&运行(包含linux内核的编译方法)

    由于之前都是用的mtk6797开发板,回到实验室之后想要做实验的话需要弄一个支持trustzone的qemu,在这里记录一下我的编译和调试过程.本来最近一直忙着看论文和写论文,但是忽然发现自己在实验部 ...

  6. Yaf框架的配置

    http://www.laruence.com/manual/yaf.ini.html //先看一下惠新宸鸟哥yaf官网的配置说明 我们可以在php.ini中定义开发环节配置项,把本地开发设置成dev ...

  7. 1.8 range

    哈哈,前边忘了介绍这个知识点了,老是用人家,不介绍一下都不好意思了. range()函数是一个用来创建数字序列的函数. 问题来了,为什么要写函数? 封装代码啊,让使用者不需要关心具体业务逻辑是如何实现 ...

  8. 1.2 Python开发环境

    1.2.1 百家争鸣的繁荣景象 工欲善其事,必先利其器.学习编程也是同样的道理,熟悉开发环境应该是学习一门编程语言的第一步. IDLE是Python的官方标准开发环境,从官网www.python.or ...

  9. hdu1394 分治 or 线段树

    利用分治求一次逆序数,然后每次把第一个元素放到末尾,设该交换元素的值为x,设上一次求得的逆序数为y,那么此时的逆序数等于y - x + (n - x - 1),减去x是因为x作为第一个元素,其后共有x ...

  10. ReportView动态加载带参数的RDCL文件

    在vs里新建一个winform程序"ReportViewTest",在form1中添加一个reportView控件,from1的load事件如下: private void For ...