大于k的部分直接加k
对于小于等于k的cnt个数 ans=cnt*k - Σ(k/i * i)
然后k/i在一段区间内不变,这段区间直接可以数列求和

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} ll n, k, ans; int main(RG int argc, RG char* argv[]){
n = Read(); k = Read();
if(n > k) ans = (n - k) * k, n = k;
ans += n * k;
for(RG ll l = 1, r = n; l <= n; l = r + 1){
r = min(n, k / (k / l));
ans -= (k / l) * (r - l + 1) * (l + r) >> 1;
}
printf("%lld\n", ans);
return 0;
}

[CQOI2007]余数求和的更多相关文章

  1. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  2. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  3. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  4. [Luogu 2261] CQOI2007 余数求和

    [Luogu 2261] CQOI2007 余数求和 这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊. 这题一看暴力很好打,然而 \( ...

  5. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  6. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

  7. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  8. P2261 [CQOI2007]余数求和 【整除分块】

    一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$  ...

  9. 洛谷P2261 [CQOI2007] 余数求和 [数论分块]

    题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...

随机推荐

  1. yii2 源码分析Action类分析 (六)

    Action类是控制器的基类, <?php namespace yii\base; use Yii; /** * Action是所有控制器动作类的基类,它继承组件类 * * 动作提供了重用动作方 ...

  2. 【HTTP协议】---TCP三次握手和四次挥手

    TCP三次握手和四次挥手 首先我们知道HTTP协议通常承载于TCP协议之上,HTTPS承载于TLS或SSL协议层之上 通过上面这张图我们能够知道.     在Http工作之前,Web浏览器通过网络和W ...

  3. Linux一些常用操作

    1.linux swap分区 可采用文件的方式 dd if=/dev/zero of=/var/swap bs=1024 count=2048000 mkswap /var/swap swapon / ...

  4. eclipse 使 用Ctrl+鼠标左键进入mapper.xml文件的方法

    在 >eclipse MarketPlace中下载>Mybatipse 插件安装重启即可完成

  5. Selenium+Python进行web自动化测试(Demo+API)

    Selenium官方网站 http://selenium-python.readthedocs.io/ 配置使用环境 下载相应的浏览器驱动, Firefox 是默认的 本文以 chrome 为主 ,放 ...

  6. CentOs 7 中安装tomcat8

    1,下载tomcat8.0 进入tomcat的下载地址:http://tomcat.apache.org/download-80.cgi 2,上传到linux服务器 cd /usr/local/jav ...

  7. angular4升级angular5问题记录之No NgModule metadata found for 'AppModule'

    在将项目从angular4升级到angular5的过程中,出现No NgModule metadata found for 'AppModule'问题,网上查找答案将app.module.ts进行再次 ...

  8. JMS学习(一):初识JMS

    1.为什么使用JMS(java消息中间件)java message service 为了解决一个系统对服务调用进行解耦(在一个系统需要调用多个服务的时候,需要通过中间件来进行消息进行交流) 2.AMQ ...

  9. nyoj234 吃土豆 01背包

    思路:假设我们先只考虑一行,规则就是取了i处的土豆,每一个土豆有两种选择,拿与不拿,那么i-1和i+1处的土豆都不能再取,那么要求某一行的最大取值就用一次动态规划即可,dp(i)表示前i个土豆能取得的 ...

  10. 生活常用类API调用的代码示例合集:邮编查询、今日热门新闻查询、区号查询等

    以下示例代码适用于 www.apishop.net 网站下的API,使用本文提及的接口调用代码示例前,您需要先申请相应的API服务. 邮编查询:通过邮编查询地名:通过地名查询邮编 今日热门新闻查询:提 ...