BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划

Description

为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴。小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴。

在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n)。
现在小G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x 的寿司,小 W 品尝的寿司中存在一种美味度为 y 的寿司,而 x 与 y 不互质。
现在小 G 和小 W 希望统计一共有多少种和谐的品尝寿司的方案(对给定的正整数 p 取模)。注意一个人可以不吃任何寿司。

Input

输入文件的第 1 行包含 2 个正整数 n,p,中间用单个空格隔开,表示共有 n 种寿司,最终和谐的方案数要对 p 取模。

Output

输出一行包含 1 个整数,表示所求的方案模 p 的结果。

Sample Input

3 10000

Sample Output

9

HINT

2≤n≤500

0<p≤1000000000

考虑状压每个质因子。。。
500以内的质数有九十多个,但是一些超过$\sqrt{n}$ 的质因子在一个数中最多出现一次。
于是把前$8$ 个质数压成二进制,对每个数求一遍状态和他包含的大质数。
把含有大质数相同的一起处理。
设$f[i][j]$ 表示第一个人选的状态为$i$, 第二个人选的状态为$j$的方案数。
$g[i][j]$表示第一个人不选这个大质数的方案数,$h[i][j]$表示第二个数不选这个大质数的方案数
让初始$g[i][j]=h[i][j]=f[i][j]$
转移后$f[i][j]=g[i][j]+h[i][j]-f[i][j]$
注意枚举顺序
 
代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <stdlib.h>
using namespace std;
int mod,f[266][266],g[266][266],h[266][266];
int mask=255,n;
int pr[22];
struct A {
int val,lp;
}a[550];
bool cmp(const A &x,const A &y){return x.lp<y.lp;}
int main() {
scanf("%d%d",&n,&mod);
int i,j,k,l;
pr[2]=0; pr[3]=1; pr[5]=2; pr[7]=3; pr[11]=4; pr[13]=5; pr[17]=6; pr[19]=7;
for(i=2;i<=n;i++) {
int tmp=i;
for(j=2;j*j<=tmp;j++) {
if(tmp%j==0) {
a[i-1].val|=(1<<pr[j]);
while(tmp%j==0) tmp/=j;
}
}
if(tmp!=1) {
if(tmp>19) a[i-1].lp=tmp;
else a[i-1].val|=(1<<pr[tmp]);
}
}
int lst=1;
sort(a+1,a+n,cmp);
f[0][0]=1;
for(i=1;i<n;i=lst+1) {
if(a[i].lp) {
while(lst<n-1&&a[lst+1].lp==a[i].lp) lst++;
for(j=0;j<=mask;j++) {
for(k=0;k<=mask;k++) {
g[j][k]=h[j][k]=f[j][k];
}
}
for(j=i;j<=lst;j++) {
for(k=mask;k>=0;k--) {
for(l=mask;l>=0;l--) {
if(!(k&l)&&!(a[j].val&l)) {
g[k|a[j].val][l]=(g[k|a[j].val][l]+g[k][l])%mod;
h[l][k|a[j].val]=(h[l][k|a[j].val]+h[l][k])%mod;
}
}
}
}
for(j=0;j<=mask;j++) {
for(k=0;k<=mask;k++) {
f[j][k]=((g[j][k]+h[j][k]-f[j][k])%mod+mod)%mod;
}
}
}else {
lst=i;
for(j=0;j<=mask;j++) {
for(k=0;k<=mask;k++) {
g[j][k]=f[j][k];
}
}
for(j=0;j<=mask;j++) {
for(k=0;k<=mask;k++) {
if(!(a[i].val&k)&&!(j&k)) {
(f[j|a[i].val][k]+=g[j][k])%=mod;
(f[k][j|a[i].val]+=g[k][j])%=mod;
}
}
}
}
}
int ans=0;
for(i=0;i<=mask;i++) {
for(j=0;j<=mask;j++) {
if(!(i&j)&&f[i][j]) ans=(ans+f[i][j])%mod;
}
}
printf("%d\n",ans);
}
 
 

BZOJ_4197_[Noi2015]寿司晚宴_状态压缩动态规划的更多相关文章

  1. BZOJ 4197: [Noi2015]寿司晚宴 状态压缩 + 01背包

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MB Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿 ...

  2. [NOI2015]寿司晚宴 --- 状压DP

    [NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿 ...

  3. 【BZOJ4197】[Noi2015]寿司晚宴 状压DP+分解质因数

    [BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴 ...

  4. [BZOJ4197][Noi2015]寿司晚宴

    4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 412  Solved: 279[Submit][Status] ...

  5. BZOJ 4197: [Noi2015]寿司晚宴( dp )

    N^0.5以内的质数只有8个, dp(i, j, k)表示用了前i个大质数(>N^0.5), 2人选的质数(<=N^0.5)集合分别为j, k时的方案数. 转移时考虑当前的大质数p是给哪个 ...

  6. 状态压缩动态规划 状压DP

    总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...

  7. [UOJ#129][BZOJ4197][Noi2015]寿司晚宴

    [UOJ#129][BZOJ4197][Noi2015]寿司晚宴 试题描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司 ...

  8. 【bzoj4197】[Noi2015]寿司晚宴 分解质因数+状态压缩dp

    题目描述 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 ...

  9. NOI2015 寿司晚宴

    今年NOI确实是在下输了.最近想把当时不会做的题都写一下. 题意 从2到n(500)这些数字中,选若干分给A,若干分给B,满足不存在:A的某个数和B的某个数的GCD不等于1. 对于寿司晚宴这题,标准解 ...

随机推荐

  1. 电商网站开发记录(三) Spring的引入,以及配置详解

    1.web.xml配置注解<?xml version="1.0" encoding="UTF-8"?><web-app xmlns:xsi=& ...

  2. Effective Java 第三版——39. 注解优于命名模式

    Tips <Effective Java, Third Edition>一书英文版已经出版,这本书的第二版想必很多人都读过,号称Java四大名著之一,不过第二版2009年出版,到现在已经将 ...

  3. Android弹幕功能实现,模仿斗鱼直播的弹幕效果

    转载出处:http://blog.csdn.net/sinyu890807/article/details/51933728 本文同步发表于我的微信公众号,扫一扫文章底部的二维码或在微信搜索 郭霖 即 ...

  4. Rafy 领域实体框架简介

    按照最新的功能,更新了最新版的<Rafy 领域实体框架的介绍>,内容如下: 本文包含以下章节: 简介 特点 优势 简介 Rafy 领域实体框架是一个轻量级 ORM 框架. 与一般的 ORM ...

  5. 解决iframe在移动端(主要iPhone)上的问题

    前言 才发现已经有一段时间没有写博客了,就简单的说了最近干了啥吧.前段时间忙了杂七杂八的事情,首先弄了个个人的小程序,对的,老早就写了篇从零入手微信小程序开发,然后到前段时间才弄了个简单的个人小程序, ...

  6. ajax 原生态和jquery封装区别

    一.原生态 var xmlHttp = false; try{ if( xmlHttp && xmlHttp.readyState != 0 ){ xmlHttp.abort(); } ...

  7. SQL Server性能优化(8)堆表结构介绍

    一.表结构综述 下图是SQL Server中表的组织形式(其中分区1.分区2是为了便于管理,把表进行分区,放到不同的硬盘数据文件里.默认情况下,表只有一个分区.).表在硬盘上的存放形式,有堆和B树两种 ...

  8. C语言pow()函数的计算精度问题

    编程计算 a+aa+aaa+-+aa-a(n个a)的值,n和a的值由键盘输入.例如,当n=4,a=2,表示计算2+22+222+2222的值. 程序运行结果示例: Input a,n: 2,4↙ su ...

  9. 填坑!!!virtualenv 中 nginx + uwsgi 部署 django

    一.为什么会有这篇文章 第一次接触 uwsgi 和 nginx ,这个环境搭建,踩了太多坑,现在记录下来,让后来者少走弯路. 本来在 Ubuntu14.04 上 搭建好了环境,然后到 centos7. ...

  10. Python《学习手册:第一章-习题》

    人们选择Python的六大主要原因是什么? 软件质量:Python注重可读性.一致性和软件质量. Python代码的设计致力于可读性,因此具备了比传统脚本语言更优秀的可重用性和可维护性. Python ...