BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS

题意:

你被要求设计一个计算器完成以下三项任务:
1、给定y,z,p,计算Y^Z Mod P 的值;
2、给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数;
3、给定y,z,p,计算满足Y^x ≡ Z ( mod P)的最小非负整数。
 
分析:
各种板子题
 
代码:
// luogu-judger-enable-o2
// luogu-judger-enable-o2
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <math.h>
using namespace std;
#define LL long long
map<LL,int> mp;
LL qp(LL x,LL y,LL mod){
LL re=1;
while(y){
if(y&1ll)re=re*x%mod;
x=x*x%mod;
y>>=1ll;
}
return re;
}
void exgcd(LL a,LL b,LL &x,LL &y,LL &p){
if(!b){x=1;y=0;p=a;return ;}
exgcd(b,a%b,y,x,p);
y-=(a/b)*x;
}
LL BSGS(LL n,LL a,LL b){
if(n==1)if(!b)return a!=1; else return -1;
if(b==1)if(a)return 0; else return -1;
if(a%n==0)if(!b)return 1; else return -1;
LL m=ceil(sqrt(n)),d=1,base=1;
mp.clear();
for(int i=0;i<m;i++)
{
if(!mp.count(base))mp[base]=i;
base=(base*a)%n;
}
for(int i=0;i<m;i++)
{
LL x,y,s;
exgcd(d,n,x,y,s);
x=(x*b%n+n)%n;
if(mp.count(x))return i*m+mp[x];
d=(d*base)%n;
}
return -1;
}
int main()
{
int t,k;
scanf("%d%d",&t,&k);
int i;
LL a,b,n,x,y,p;
for(i=1;i<=t;i++){
scanf("%lld%lld%lld",&a,&b,&n);
if(k==1){
printf("%lld\n",qp(a,b,n));
}else if(k==2){
exgcd(a,n,x,y,p);
if(b%p){
puts("Orz, I cannot find x!");continue;
}
x=(x*(b/p)%n+n)%n;
printf("%lld\n",x);
}else if(k==3){
LL x=BSGS(n,a,b);
if(x==-1)puts("Orz, I cannot find x!");
else printf("%lld\n",x);
}
}
}

BZOJ_2242_[SDOI2011]计算器_快速幂+扩展GCD+BSGS的更多相关文章

  1. 【bzoj2242】: [SDOI2011]计算器 数论-快速幂-扩展欧几里得-BSGS

    [bzoj2242]: [SDOI2011]计算器 1.快速幂 2.扩展欧几里得(费马小定理) 3.BSGS /* http://www.cnblogs.com/karl07/ */ #include ...

  2. BZOJ 2242: [SDOI2011]计算器( 快速幂 + 扩展欧几里德 + BSGS )

    没什么好说的... --------------------------------------------------------------------- #include<cstdio&g ...

  3. BZOJ 2242 [SDOI2011]计算器(快速幂+Exgcd+BSGS)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2242 [题目大意] 给出T和K 对于K=1,计算 Y^Z Mod P 的值 对于K=2 ...

  4. [bzoj2242][SDOI2011][计算器] (Baby-Step-Giant-Step+快速幂+exgcd)

    Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ Z ( mod P )的最小非负整数: 3.给 ...

  5. BZOJ 2242 [SDOI2011]计算器 ——EXGCD/快速幂/BSGS

    三合一的题目. exgcd不解释,快速幂不解释. BSGS采用了一种不用写EXGCD的方法,写起来感觉好了很多. 比较坑,没给BSGS的样例(LAJI) #include <map> #i ...

  6. bzoj 2242: [SDOI2011]计算器 BSGS+快速幂+扩展欧几里德

    2242: [SDOI2011]计算器 Time Limit: 10 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description 你被 ...

  7. bzoj 2242 [SDOI2011]计算器 快速幂+扩展欧几里得+BSGS

    1:快速幂  2:exgcd  3:exbsgs,题里说是素数,但我打的普通bsgs就wa,exbsgs就A了...... (map就是慢)..... #include<cstdio> # ...

  8. “盛大游戏杯”第15届上海大学程序设计联赛夏季赛暨上海高校金马五校赛题解&&源码【A,水,B,水,C,水,D,快速幂,E,优先队列,F,暴力,G,贪心+排序,H,STL乱搞,I,尼姆博弈,J,差分dp,K,二分+排序,L,矩阵快速幂,M,线段树区间更新+Lazy思想,N,超级快速幂+扩展欧里几德,O,BFS】

    黑白图像直方图 发布时间: 2017年7月9日 18:30   最后更新: 2017年7月10日 21:08   时间限制: 1000ms   内存限制: 128M 描述 在一个矩形的灰度图像上,每个 ...

  9. 从BZOJ2242看数论基础算法:快速幂,gcd,exgcd,BSGS

    LINK 其实就是三个板子 1.快速幂 快速幂,通过把指数转化成二进制位来优化幂运算,基础知识 2.gcd和exgcd gcd就是所谓的辗转相除法,在这里用取模的形式体现出来 \(gcd(a,b)\) ...

随机推荐

  1. sqlplus 登录数据库

     sqlplus pams/pamscncc@ORCLMIS

  2. 简单工厂,Factory Method(工厂方法)和Abstract Factory(抽象工厂)模式

    对于简单工厂来说,它的工厂只能是这个样子的 public class SimplyFactory {  /** * 静态工厂方法 */ public static Prouct factory(Str ...

  3. 什么是shell? bash和shell有什么关系?

    什么是shell? bash和shell有什么关系? 博客分类: Linux   什么是Shell?      shell是你(用户)和Linux(或者更准确的说,是你和Linux内核)之间的接口程序 ...

  4. 完整的WebRTC调用序列图

    说在前面的话:此图出自Rea-Time Communication with WebRTC: https://book.douban.com/subject/25849712/ 的第五章.

  5. c++11线程池

    #pragma once #include <future> #include <vector> #include <atomic> #include <qu ...

  6. vue UI库iview源码解析(2)

    上篇问题 在上篇<iview源码解析(1)>中的index.js 入口文件的源码中有一段代码有点疑惑: /** * 在浏览器环境下默认加载组件 */ // auto install if ...

  7. 震惊!外部类可以访问内部类private变量

    在讲Singleton时我举例时用过这样一段代码: public class SingletonDemo { private static class SingletonHolder{ private ...

  8. lambda隐藏函数的嵌套

    # 隐藏函数嵌套 f = (lambda a,b :a if a>b else b)(1000, 2000008) print((lambda a,g:a if a > g else g) ...

  9. .net 弹出消息框后,页面样式变乱

    点击按钮,执行提交操作,弹出消息框后,页面的样式变乱,解决方法: 首先,确定使用的css样式正确,页面中的宽高值保持规范统一: 然后,弹出框避免使用Response.Write(),如下所示 Resp ...

  10. numpy用法归纳

    1.生成数组 import numpy as np 把python列表转换为数组 >>> np.array([1, 2, 3]) array([1, 2, 3]) 把python的r ...