掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。

但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。

基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。

一、切片

取一个list或tuple的部分元素是非常常见的操作。

对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。

对应上面的问题,取前3个元素,用一行代码就可以完成切片:

1、>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
2、类似的,既然Python支持L[-1]取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']

3、切片操作十分有用。我们先创建一个0-99的数列:
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9] 4、

后10个数:

>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]

5、

前10个数,每两个取一个:

>>> L[:10:2]
[0, 2, 4, 6, 8]
6、所有数,每5个取一个:

>>> L[::5]

[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]

7、

甚至什么都不写,只写[:]就可以原样复制一个list:

>>> L[:]
[0, 1, 2, 3, ..., 99]
8、

tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:

>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
9、

字符串'xxx'也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:

>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'

 10、在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。

11、有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。

二、迭代

1、如果给定一个list或tuple,我们可以通过for循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。

2、可以看出,Python的for循环抽象程度要高于Java的for循环,因为Python的for循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。比如:字典 dict类型。

>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b

3、由于字符串也是可迭代对象,因此,也可以作用于for循环: 

>>> for ch in 'ABC':
... print(ch)
...
A
B
C 4、

所以,当我们使用for循环时,只要作用于一个可迭代对象,for循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。

那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:

>>> from collections import Iterable
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
5、
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate函数可以把一个list变成索引-元素对,这样就可以在for循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
... print(i, value)
...
0 A
1 B
2 C
6、上面的for循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9

三、 列表生成式

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

 如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环

 >>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

 但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:  

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
因此,列表生成式也可以使用两个变量来生成list
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C'] 把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple'] 四、生成器

通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
 当然,这种调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象。
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...

generator的另一种方法,如果一个函数定义中包含yield关键字,那么这个函数就不再是一个普通函数,而是一个generator。 五、迭代器

我们已经知道,可以直接作用于for循环的数据类型有以下几种:

一类是集合数据类型,如listtupledictsetstr等;

一类是generator,包括生成器和带yield的generator function。

这些可以直接作用于for循环的对象统称为可迭代对象:Iterable

可以使用isinstance()判断一个对象是否是Iterable对象:

>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False

而生成器不但可以作用于for循环,还可以被next()函数不断调用并返回下一个值,直到最后抛出StopIteration错误表示无法继续返回下一个值了。

可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator

可以使用isinstance()判断一个对象是否是Iterator对象:

>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False

你可能会问,为什么listdictstr等数据类型不是Iterator

这是因为Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。

Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

 

day4 liaoxuefeng---高级特性的更多相关文章

  1. Learning Python 011 高级特性 2

    Python 高级特性 2 列表生成式 列表生成式就是指类似这样的代码:[x for x in range(1, 11)] >>> L = [x for x in range(1, ...

  2. Learning Python 011 高级特性 1

    Python 高级特性 1 切片 将L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']列表中前上个3个元素: L = ['Michael', 'Sarah ...

  3. Python的一些高级特性

    内容基本上来自于廖雪峰老师的blog相当于自己手打了一遍,加强加强理解吧. http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493 ...

  4. ActiveMQ中的Destination高级特性(一)

    ---------------------------------------------------------------------------------------- Destination ...

  5. Python3学习(二)-递归函数、高级特性、切片

    ##import sys ##sys.setrecursionlimit(1000) ###关键字参数(**关键字参数名) ###与可变参数不同的是,关键字参数可以在调用函数时,传入带有参数名的参数, ...

  6. 云端卫士实战录 | Java高级特性之多线程

    <实战录>导语 一转眼作为一名Java开发者已经四年多时间了,说长不长说短不短,对于java的感情还是比较深的,主要嘛毕竟它给了我饭吃.哈哈,开个玩笑.今天我想借此机会来和大家聊聊Java ...

  7. javascript高级特性

    01_javascript相关内容02_函数_Arguments对象03_函数_变量的作用域04_函数_特殊函数05_闭包_作用域链&闭包06_闭包_循环中的闭包07_对象_定义普通对象08_ ...

  8. Visual Studio 2015 速递(4)——高级特性之移动开发

    系列文章 Visual Studio 2015速递(1)——C#6.0新特性怎么用 Visual Studio 2015速递(2)——提升效率和质量(VS2015核心竞争力) Visual Studi ...

  9. Android TextView高级特性使用

    TextView一般都是用来显示一段文本,这里说的高级特性主要是一些我们平常不太常用的属性.包括文字阴影.自定义字体.html嵌入多格式.字体加粗.插入图片.这些特性平时开发APP的时候,可能一般使用 ...

  10. Python的高级特性8:你真的了解类,对象,实例,方法吗

    Python的高级特性1-7系列是本人从Python2过渡3时写下的一些个人见解(不敢说一定对),接下来的系列主要会以类级为主. 类,对象,实例,方法是几个面向对象的几个基本概念,其实我觉得很多人并不 ...

随机推荐

  1. .net 小程序获取用户UnionID

    第一次写博客,写的不好多多海涵! 1.小程序获取UnionID的流程用code去换取session_key,然后去解密小程序获取到的那串字符! 话不多说,原理大家都懂!!!!!! 直接上代码 publ ...

  2. SpringCloud的Archaius - 动态管理属性配置

    参考链接:http://www.th7.cn/Program/java/201608/919853.shtml 一.Archaius是什么? Archaius用于动态管理属性配置文件. 参考自Gett ...

  3. 新概念英语(1-43)Hurry up!

    新概念英语(1-43)Hurry up! How do you know Sam doesn't make the tea very often? A:Can you make the tea, Sa ...

  4. Bootstrap 栅格系统简单整理

    Bootstrap内置了一套响应式.移动设备优先的流式栅格系统,随着屏幕设备或视口(viewport)尺寸的增加,系统会自动分为最多12列. 总结一下我近期的学习Bootstrap的一些理解: 一.. ...

  5. 前端之HTML内容

    一.HTML介绍 1.Web服务本质 当我们在浏览器中输入一个url后打开一个页面这个过程实质是一个网络编程中的sockt服务端接受指令并发送指令的一个过程.本质顺序是: 浏览器发请求——>HT ...

  6. 前端学习之jquery/下

    前端学习之jquery 一 属性操作 html(): console.log($("div").html()); $(".test").html("& ...

  7. 使用net.sf.cssbox实现网页截图

    需要引用包,在pom.xml中添加引用: <dependency> <groupId>net.sf.cssbox</groupId> <artifactId& ...

  8. Oracle12c:自动分区表

    为什么要创建oracle分区表? 一般情况下,如果不分区,则每次查询的对象都是一整张表,如果采用了表分区,那么可以根据具体的分区字段当作条件来避免扫描整张表,减少IO的扫描以提高表的查询速度. 新建( ...

  9. scrapy爬取全部知乎用户信息

    # -*- coding: utf-8 -*- # scrapy爬取全部知乎用户信息 # 1:是否遵守robbots_txt协议改为False # 2: 加入爬取所需的headers: user-ag ...

  10. django 开发忘记密码通过邮箱找回功能

    一.流程分析: 1.点击忘记密码====>forget.html页面,输入邮箱和验证码,发送验证链接网址的邮件====>发送成功,跳到send_success.html提示 2.到邮箱里找 ...