day4 liaoxuefeng---高级特性
掌握了Python的数据类型、语句和函数,基本上就可以编写出很多有用的程序了。
但是在Python中,代码不是越多越好,而是越少越好。代码不是越复杂越好,而是越简单越好。
基于这一思想,我们来介绍Python中非常有用的高级特性,1行代码能实现的功能,决不写5行代码。请始终牢记,代码越少,开发效率越高。
一、切片
取一个list或tuple的部分元素是非常常见的操作。
对这种经常取指定索引范围的操作,用循环十分繁琐,因此,Python提供了切片(Slice)操作符,能大大简化这种操作。
对应上面的问题,取前3个元素,用一行代码就可以完成切片:
1、>>> L[0:3]
['Michael', 'Sarah', 'Tracy']
2、类似的,既然Python支持L[-1]
取倒数第一个元素,那么它同样支持倒数切片,试试:
>>> L[-2:]
['Bob', 'Jack']
>>> L[-2:-1]
['Bob']
3、切片操作十分有用。我们先创建一个0-99的数列:
>>> L = list(range(100))
>>> L
[0, 1, 2, 3, ..., 99]
可以通过切片轻松取出某一段数列。比如前10个数:
>>> L[:10]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
4、
后10个数:
>>> L[-10:]
[90, 91, 92, 93, 94, 95, 96, 97, 98, 99]
5、
前10个数,每两个取一个:
>>> L[:10:2]
[0, 2, 4, 6, 8]
6、所有数,每5个取一个:
>>> L[::5]
[0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95]
7、
甚至什么都不写,只写[:]
就可以原样复制一个list:
>>> L[:]
[0, 1, 2, 3, ..., 99]
8、
tuple也是一种list,唯一区别是tuple不可变。因此,tuple也可以用切片操作,只是操作的结果仍是tuple:
>>> (0, 1, 2, 3, 4, 5)[:3]
(0, 1, 2)
9、
字符串'xxx'
也可以看成是一种list,每个元素就是一个字符。因此,字符串也可以用切片操作,只是操作结果仍是字符串:
>>> 'ABCDEFG'[:3]
'ABC'
>>> 'ABCDEFG'[::2]
'ACEG'
10、在很多编程语言中,针对字符串提供了很多各种截取函数(例如,substring),其实目的就是对字符串切片。Python没有针对字符串的截取函数,只需要切片一个操作就可以完成,非常简单。
11、有了切片操作,很多地方循环就不再需要了。Python的切片非常灵活,一行代码就可以实现很多行循环才能完成的操作。
二、迭代
1、如果给定一个list或tuple,我们可以通过for
循环来遍历这个list或tuple,这种遍历我们称为迭代(Iteration)。
2、可以看出,Python的for
循环抽象程度要高于Java的for
循环,因为Python的for
循环不仅可以用在list或tuple上,还可以作用在其他可迭代对象上。比如:字典 dict类型。
>>> d = {'a': 1, 'b': 2, 'c': 3}
>>> for key in d:
... print(key)
...
a
c
b
3、由于字符串也是可迭代对象,因此,也可以作用于
for
循环:
>>> for ch in 'ABC':
... print(ch)
...
A
B
C
4、
所以,当我们使用for
循环时,只要作用于一个可迭代对象,for
循环就可以正常运行,而我们不太关心该对象究竟是list还是其他数据类型。
那么,如何判断一个对象是可迭代对象呢?方法是通过collections模块的Iterable类型判断:
>>> from collections import Iterable
5、
>>> isinstance('abc', Iterable) # str是否可迭代
True
>>> isinstance([1,2,3], Iterable) # list是否可迭代
True
>>> isinstance(123, Iterable) # 整数是否可迭代
False
最后一个小问题,如果要对list实现类似Java那样的下标循环怎么办?Python内置的enumerate
函数可以把一个list变成索引-元素对,这样就可以在for
循环中同时迭代索引和元素本身:
>>> for i, value in enumerate(['A', 'B', 'C']):
6、上面的
... print(i, value)
...
0 A
1 B
2 Cfor
循环里,同时引用了两个变量,在Python里是很常见的,比如下面的代码:
>>> for x, y in [(1, 1), (2, 4), (3, 9)]:
... print(x, y)
...
1 1
2 4
3 9
三、 列表生成式
举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
可以用list(range(1, 11))
如果要生成[1x1, 2x2, 3x3, ..., 10x10]
怎么做?方法一是循环
>>> L = []
>>> for x in range(1, 11):
... L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:
>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:
>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]
还可以使用两层循环,可以生成全排列:
>>> [m + n for m in 'ABC' for n in 'XYZ']
['AX', 'AY', 'AZ', 'BX', 'BY', 'BZ', 'CX', 'CY', 'CZ']
for
循环其实可以同时使用两个甚至多个变量,比如dict
的items()
可以同时迭代key和value
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> for k, v in d.items():
... print(k, '=', v)
...
y = B
x = A
z = C
因此,列表生成式也可以使用两个变量来生成list:
>>> d = {'x': 'A', 'y': 'B', 'z': 'C' }
>>> [k + '=' + v for k, v in d.items()]
['y=B', 'x=A', 'z=C']
把一个list中所有的字符串变成小写:
>>> L = ['Hello', 'World', 'IBM', 'Apple']
>>> [s.lower() for s in L]
['hello', 'world', 'ibm', 'apple']
四、生成器
通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。
所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。
要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]
改成()
,就创建了一个generator:
>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>
创建L
和g
的区别仅在于最外层的[]
和()
,L
是一个list,而g
是一个generator。
我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?
如果要一个一个打印出来,可以通过next()
函数获得generator的下一个返回值:
>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration
当然,这种调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象。
>>> g = (x * x for x in range(10))
>>> for n in g:
... print(n)
...
generator的另一种方法,如果一个函数定义中包含yield
关键字,那么这个函数就不再是一个普通函数,而是一个generator。 五、迭代器
我们已经知道,可以直接作用于for
循环的数据类型有以下几种:
一类是集合数据类型,如list
、tuple
、dict
、set
、str
等;
一类是generator
,包括生成器和带yield
的generator function。
这些可以直接作用于for
循环的对象统称为可迭代对象:Iterable
。
可以使用isinstance()
判断一个对象是否是Iterable
对象:
>>> from collections import Iterable
>>> isinstance([], Iterable)
True
>>> isinstance({}, Iterable)
True
>>> isinstance('abc', Iterable)
True
>>> isinstance((x for x in range(10)), Iterable)
True
>>> isinstance(100, Iterable)
False
而生成器不但可以作用于for
循环,还可以被next()
函数不断调用并返回下一个值,直到最后抛出StopIteration
错误表示无法继续返回下一个值了。
可以被next()
函数调用并不断返回下一个值的对象称为迭代器:Iterator
。
可以使用isinstance()
判断一个对象是否是Iterator
对象:
>>> from collections import Iterator
>>> isinstance((x for x in range(10)), Iterator)
True
>>> isinstance([], Iterator)
False
>>> isinstance({}, Iterator)
False
>>> isinstance('abc', Iterator)
False
你可能会问,为什么list
、dict
、str
等数据类型不是Iterator
?
这是因为Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。
day4 liaoxuefeng---高级特性的更多相关文章
- Learning Python 011 高级特性 2
Python 高级特性 2 列表生成式 列表生成式就是指类似这样的代码:[x for x in range(1, 11)] >>> L = [x for x in range(1, ...
- Learning Python 011 高级特性 1
Python 高级特性 1 切片 将L = ['Michael', 'Sarah', 'Tracy', 'Bob', 'Jack']列表中前上个3个元素: L = ['Michael', 'Sarah ...
- Python的一些高级特性
内容基本上来自于廖雪峰老师的blog相当于自己手打了一遍,加强加强理解吧. http://www.liaoxuefeng.com/wiki/001374738125095c955c1e6d8bb493 ...
- ActiveMQ中的Destination高级特性(一)
---------------------------------------------------------------------------------------- Destination ...
- Python3学习(二)-递归函数、高级特性、切片
##import sys ##sys.setrecursionlimit(1000) ###关键字参数(**关键字参数名) ###与可变参数不同的是,关键字参数可以在调用函数时,传入带有参数名的参数, ...
- 云端卫士实战录 | Java高级特性之多线程
<实战录>导语 一转眼作为一名Java开发者已经四年多时间了,说长不长说短不短,对于java的感情还是比较深的,主要嘛毕竟它给了我饭吃.哈哈,开个玩笑.今天我想借此机会来和大家聊聊Java ...
- javascript高级特性
01_javascript相关内容02_函数_Arguments对象03_函数_变量的作用域04_函数_特殊函数05_闭包_作用域链&闭包06_闭包_循环中的闭包07_对象_定义普通对象08_ ...
- Visual Studio 2015 速递(4)——高级特性之移动开发
系列文章 Visual Studio 2015速递(1)——C#6.0新特性怎么用 Visual Studio 2015速递(2)——提升效率和质量(VS2015核心竞争力) Visual Studi ...
- Android TextView高级特性使用
TextView一般都是用来显示一段文本,这里说的高级特性主要是一些我们平常不太常用的属性.包括文字阴影.自定义字体.html嵌入多格式.字体加粗.插入图片.这些特性平时开发APP的时候,可能一般使用 ...
- Python的高级特性8:你真的了解类,对象,实例,方法吗
Python的高级特性1-7系列是本人从Python2过渡3时写下的一些个人见解(不敢说一定对),接下来的系列主要会以类级为主. 类,对象,实例,方法是几个面向对象的几个基本概念,其实我觉得很多人并不 ...
随机推荐
- 从数据恢复角度解析RAID6结构原理
[什么是RAID] RAID的概念描述在互联网上比比皆是,用最简单的原理描述,就是在定义存储方式时允许在一部分数据缺失的情况下不影响全部数据,类似于通讯领域的纠错码.不同的冗余模式形成了不同的R ...
- 总体来说,require_once 肯定要比 require 性能好
首先,总体来说,require_once 肯定要比 require 性能好. 因为 require 某个文件等同于 "编译 + 执行" 这个文件:require_once 避免了对 ...
- JAVA_SE基础——40.super关键字
只要this关键字掌握了,super关键字不在话下,因为他们原理都差不多的.. this&super 什么是this,this是自身的一个对象,代表对象本身,可以理解为:指向对象本身的一个指针 ...
- Python内置函数(27)——range
英文文档: range(stop) range(start, stop[, step]) Rather than being a function, range is actually an immu ...
- ### Cause: org.apache.ibatis.binding.BindingException: Parameter 'name' not found. Available parameters are [arg1, arg0, param1, param2]
org.apache.ibatis.exceptions.PersistenceException: ### Error updating database. Cause: org.apache.ib ...
- 访问远程的docker
docker version vim /etc/default/docker DOCKER_OPTS=" -Label name=dockerserver2" docke ...
- C#制作ActiveX插件
首先新建项目--->类库,取名:ActiveXDemo 右键项目属性:应用属性==>程序集信息=>使程序集Com可见, 生成==>输出==>为com互操作注册 新建接口类 ...
- Django admin 中抛出 'WSGIRequest' object has no attribute 'user'的错误
这是Django版本的问题,1.9之前,中间件的key为MIDDLEWARE_CLASSES, 1.9之后,为MIDDLEWARE.所以在开发环境和其他环境的版本不一致时,要特别小心,会有坑. 将se ...
- JavaScript作用域那些事
作用域 (1).作用域也叫执行环境(execution context)是JavaScript中一个重要的概念.执行环境定义了变量或函数有权访问的其他数据,决定了它们各自的行为.在JavaScript ...
- Java调用SQL脚本执行的方案
在Java中调用SQL脚本的方式有多种,在这里只记录一种自己常用的方式,个人觉得挺实用方便的. 运用ScriptRunner这个类. import org.apache.ibatis.io.Resou ...