【算法编程】基于Miller-Rabin的大素数测试
基本原理:
费尔马小定理:如果p是一个素数,且0<a<p,则a^(p-1)%p=1.
利用费尔马小定理,对于给定的整数n,可以设计素数判定算法,通过计算d=a^(n-1)%n来判断n的素性,当d!=1时,n肯定不是素数,当d=1时,n 很可能是素数.
二次探测定理:如果p是一个素数,且0<x<p,则方程x^2%p=1的解为:x=1或x=p-1.
利用二次探测定理,可以再利用费尔马小定理计算a^(n-1)%n的过程中增加对整数n的二次探测,一旦发现违背二次探测条件,即得出n不是素数的结论.
如果n是素数,则(n-1)必是偶数,因此可令(n-1)=m*(2^q),其中m是正奇数(若n是偶数,则上面的m*(2^q)一定可以分解成一个正奇数乘以2的k次方的形式 ),q是非负整数,考察下面的测试:
序列:
a^m%n; a^(2m)%n; a^(4m)%n; ……;a^(m*2^q)%n
Miller-Rabin素性测试伪代码描述:
1、找出整数k,q,其中k>0,q是奇数,使(n-1=2kq)。
2、随机选取整数a,1<a<n-1。
3、Ifaq mod n=1, printf("该数可能是素数!\n");
4、Forj=0 to k-1 , if a^(2^j*q) mod n = n – 1, printf("该数可能是素数!\n");如果步骤3、4都不成立,则printf("该数肯定不是素数!\n")
5、当该数可能是素数时,随机选取整数a,1<a<n-1。若多次都表明可能是素数,则我们有理由相信该数是素数。
具体代码实现:
1.、BigInt.h文件
#ifndef _BIGNUM_H_
#define _BIGNUM_H_
#define SIZE 128 //一个大整数用个字节保存,最多表示位大整数
#define SIZE_2 2* SIZE
typedef unsigned char UCHAR;
typedef unsigned short USHORT;
UCHAR atox(char ch); //将一个十六进制的字符(4位)转位数字,转换失败返回xff
typedef struct BigNum //大整数结构
{
UCHAR data[SIZE]; //空间为(SIZE * sizeof(UCHAR)),就是SIZE个字节
}BigNum;
BigNum Init(char *str); //初始化大整数,str为十六进制字符串
int GetBitFront(BigNum bignum); //有多少bit (前面的0不算)
int GetBitEnd(BigNum bignum); //有多少0(即只算末尾的0个数)
BigNum MovBitLetf(BigNum bignum, int n);//向左移n位
BigNum MovBitRight(BigNum bignum, int n); //右移n位
int Cmp(BigNum bignum_a, BigNum bignum_b); //大整数比较大小,>返回1,<返回-1,==返回0
BigNum Mod(BigNum bignum_a, BigNum bignum_b); //大整数模运算
BigNum Sub(BigNum bignum_a, BigNum bignum_b); //大整数减法
void print2(BigNum bignum); //以二进制打印
BigNum Mul(BigNum bignum_a, BigNum bignum_b); //大整数乘法
BigNum Div(BigNum bignum_a, BigNum bignum_b); //大整数除法
BigNum Add(BigNum bignum_a, BigNum bignum_b); //大整数加法
void print10(BigNum bignum);//以十进制打印
int b2d(BigNum bignum); //二进制到转十进制
BigNum modMDyn(BigNum a, BigNum power, BigNum mod); //求大整数幂的模
BigNum d2b(int num); //十进制转二进制
int checkprime(BigNum n,BigNum a);
#endif
2. BigInt.c文件:
#include <stdio.h>
#include<stdlib.h>
#include <string.h>
#include "BigInt.h"
#include "math.h"
#include<time.h>
void print2(BigNum bignum)//以二进制打印
{
if(GetBitFront(bignum)==0)
printf("0\n");
else
{
for(int i=SIZE-GetBitFront(bignum);i<SIZE;i++)
{
printf("%c",bignum.data[i]);
}
printf("\n");
}
}
BigNum Init(char *str) //高位在0
{
int j=0;
BigNum bignum;
for(inti=SIZE-int(strlen(str));i<SIZE;i++)
{
bignum.data[i]=str[j];
j++;
}
for(i=SIZE-int(strlen(str))-1;i>=0;i--)
bignum.data[i]='0';
return bignum;
}
int GetBitFront(BigNum bignum) //有多少bit(前面的0不算)
{
int BitOfBigNum = SIZE;
int i=0;
while ((bignum.data[i] == '0')&& (BitOfBigNum > 0))
{
i++;
BitOfBigNum--;
}
return BitOfBigNum;
}
int GetBitEnd(BigNum bignum) //有多少0(即只算末尾的0个数)
{
int BitOfBigNum = SIZE;
int num=0;
while ((bignum.data[BitOfBigNum -1] == '0') && (BitOfBigNum > 0))
{
num++;
BitOfBigNum--;
}
return num;
}
BigNum MovBitLetf(BigNum bignum, int n)//向左移n位
{
int bignum_len =GetBitFront(bignum);
for (int i =SIZE- bignum_len; i<SIZE; i++)
{
if (i - n < 0)
{
printf("ok\n");
continue;
}
bignum.data[i - n] =bignum.data[i];
}
for (i = SIZE- n; i <SIZE; i++)
{
bignum.data[i] ='0';
}
return bignum;
}
BigNum MovBitRight(BigNum bignum, int n) //右移n位
{
int bignum_len =GetBitFront(bignum);
for (int i = SIZE - 1; i >=SIZE-bignum_len; i--)
{
if (i<0)
{
continue;
}
bignum.data[i] =bignum.data[i-n];
}
for (i =0; i <SIZE-bignum_len;i++)
{
bignum.data[i] = '0';
}
return bignum;
}
int Cmp(BigNum bignum_a, BigNum bignum_b) //大整数比较大小,>返回1,<返回-1,==返回0
{
int bignum_a_len =GetBitFront(bignum_a);
int bignum_b_len =GetBitFront(bignum_b);
if(bignum_a_len>bignum_b_len)return 1;
if(bignum_a_len<bignum_b_len)return -1;
if(bignum_a_len=bignum_b_len)
{
int max = bignum_a_len;
for (int i =SIZE-max; i<SIZE; i++)
{
if (bignum_a.data[i]> bignum_b.data[i])
{
return 1;
}
if (bignum_a.data[i]< bignum_b.data[i])
{
return -1;
}
}
}
return 0;
}
BigNum Sub(BigNum bignum_a, BigNum bignum_b) //大整数减法
{
BigNum bignum_c;
int temp=0;
int temp1=0;
int carry = 0;
int i;
int j=0;
for (i = SIZE-1; i >=0; i--)
{
temp = bignum_a.data[i] -bignum_b.data[i] -carry;
temp1=temp;
if(temp==-1)
temp1=1;
if(temp==-2)
temp1=0;
bignum_c.data[i] =temp1+48;
if(temp<0)
carry=1;
else
carry=0;
j++;
}
return bignum_c;
}
BigNum Mod(BigNum bignum_a, BigNum bignum_b) //大整数模运算
{
BigNum bignum_c =Init("0");
BigNum B;
B = bignum_b;
int bignum_a_len;
int bignum_b_len;
int bignum_c_len;
if (Cmp(bignum_b, bignum_c) == 0)
{
printf("错误!除数为\n");
return bignum_c;
}
bignum_a_len =GetBitFront(bignum_a);
bignum_b_len =GetBitFront(bignum_b);
bignum_c_len = bignum_a_len -bignum_b_len;
while (bignum_c_len >= 0)
{
B = MovBitLetf(bignum_b,bignum_c_len);
int m=0;
m=Cmp(bignum_a, B);
while (Cmp(bignum_a, B) !=-1)//大于等于
{
bignum_a =Sub(bignum_a, B);
}
bignum_c_len--;
}
return bignum_a;
}
BigNum Mul(BigNum bignum_a, BigNum bignum_b) //大整数乘法
{
BigNum bignum_c =Init("0");
BigNum bignum=Init("0");
int wei=0;
wei=GetBitFront(bignum_a)+GetBitFront(bignum_b)-1;
int carry[SIZE_2];
int carry1[SIZE_2];
int mod[SIZE_2];
for(int k=0;k<=SIZE_2;k++)
{
carry[k]=0;
carry1[k]=0;
mod[k]=0;
}
int i=0;
int j=0;
for(i=SIZE-1;i>=0;i--)
{
for(j=SIZE-1;j>=0;j--)
carry[i+j+1]=(bignum_a.data[i]-48)*(bignum_b.data[j]-48)+carry[i+j+1];
}
for(k=SIZE_2-1;k>=0;k--)
{
if(k==SIZE_2-1)
carry1[k]=carry[k];
else
carry1[k]=carry1[k+1]/2+carry[k];
}
wei=GetBitFront(bignum_a)+GetBitFront(bignum_b)-1;
bignum=d2b(carry1[SIZE_2-wei]);
for(i=SIZE-1,j=SIZE_2-wei;i>=0&&j>=0;i--,j--)
carry1[j]=bignum.data[i]-48;
for(k=0;k<SIZE_2;k++)
{
if(carry1[k]!=0)
break;
}
for(i=SIZE-1,j=SIZE_2-1;j>=k;i--,j--)
{
bignum_c.data[i]=carry1[j]%2+48;
}
return bignum_c;
}
BigNum Div(BigNum bignum_a, BigNum bignum_b) //大整数除法
{
BigNum bignum_c =Init("0");
BigNum B;
int bignum_a_len;
int bignum_b_len;
int bignum_c_len;
if (Cmp(bignum_b, bignum_c) == 0)
{
printf("错误!除数为\n");
return bignum_c;
}
bignum_a_len =GetBitFront(bignum_a);
bignum_b_len = GetBitFront(bignum_b);
bignum_c_len = bignum_a_len -bignum_b_len;
while (bignum_c_len >= 0)
{
B = MovBitLetf(bignum_b,bignum_c_len);
while (Cmp(bignum_a, B) !=-1)
{
bignum_a =Sub(bignum_a, B);
bignum_c.data[SIZE-1-bignum_c_len]++;
}
bignum_c_len--;
}
return bignum_c;
}
BigNum Add(BigNum bignum_a, BigNum bignum_b) //大整数加法
{
BigNum bignum_c;
int temp;
int carry = 0;
int i;
for (i = SIZE-1; i>=0; i--)
{
temp = bignum_a.data[i]-48+ bignum_b.data[i]-48 + carry;
if(temp==2)
{
temp=0;
carry=1;
}
else if(temp==3)
{
temp=1;
carry=1;
}
else carry=0;
bignum_c.data[i] = temp+48;
}
return bignum_c;
}
int b2d(BigNum bignum) //二进制转十进制
{
int n=0;
int j=0;
int result=0;
n=GetBitFront(bignum);
for(int i=SIZE-1;i>=0;i--)
{
result=result+(bignum.data[i]-48)*pow(2,j);
j++;
}
return result;
}
void print10(BigNum bignum) //打印十进制大整数
{
int temp[SIZE];
int i = 0;
int j;
BigNum c;
while (Cmp(bignum,Init("0")) == 1)
{
c=Mod(bignum,Init("1010"));
temp[i] = b2d(c);
bignum = Div(bignum,Init("1010"));
i++;
}
for (j = i - 1; j >= 0; j--)
{
printf("%d",temp[j]);
}
printf("\n");
}
BigNum modMDyn(BigNum a, BigNum power, BigNum mod) //求大整数幂的模
{
BigNum temp;
BigNum result;
BigNum t1;
temp=Mod(a,mod);
result=Init("1");
for(inti=SIZE-1;i>=SIZE-GetBitFront(power);i--)
{
if(power.data[i]=='1')
{
t1=Mul(result,temp);
result=Mod(Mul(result,temp),mod);
}
temp=Mod(Mul(temp,temp),mod);
}
return result;
}
BigNum d2b(int num) //十进制转二进制
{
BigNum bignum;
bignum=Init("0");
int a=0;
int b=0;
int i=1;
while(num>0)
{
a=num%2;
num=num/2;
bignum.data[SIZE-i]=a+48;
i++;
}
return bignum;
}
int checkprime(BigNum n,BigNum a)
{
BigNum k;
BigNum q;
// BigNum a;
BigNum n1;//n1=n-1
BigNum num1;//num1为常数1
BigNum num2;//num2为常数2
BigNum k2;//2^k
BigNum k22;
int k1=0; //末尾0的个数
num1=Init("1");
num2=Init("10");
k=Init("0");
q=Init("0");
n1=Init("0");
k22=Init("10");
// a=Init("1010");//选择的数
n1=Sub(n,num1);
k1=GetBitEnd(n1);
k=d2b(k1);
q=MovBitRight(n1,k1);
k2=Div(n1,q);
if(Cmp(modMDyn(a,q,n),num1)==0)
{
// print2(n);
// printf("该数可能是素数!\n");
return 1;
}
for(int i=0;i<b2d(k);i++)
{
k22=MovBitLetf(num1,i);
if(Cmp(modMDyn(a,Mul(k22,q),n),n1)==0)
{
// print2(n);
// printf("该数可能是素数!\n");
return 1;
}
}
print10(n);
printf("该数肯定不是素数!\n");
return 0;
}
void main()//主函数的内容可以根据你自己的需求编写!
{
BigNum n;//n为要判断的素数
BigNum k;
BigNum q;
BigNum a;
BigNum n1;//n1=n-1
BigNum num1;//num1为常数1
BigNum num2;//num2为常数2
BigNum k2;//2^k
BigNum k22;
int k1=0; //末尾0的个数
int flag=0;
int aa=10;
int i=0;
num1=Init("1");
num2=Init("10");
k=Init("0");
q=Init("0");
n1=Init("0");
k22=Init("10");
a=Init("1010");//选择的数
n=Init("1111111111111111111111111111111111111111111111111111111111111111");//最大的64bit数 a可以设128bit内的值
// n=Init("1111");
srand(time(NULL));
n1=Sub(n,Mul(num2,num1));
for(int kk=0;kk<30;kk++)//这里可以自己设置循环次数
{
n=Sub(n,Mul(num2,num1));//n每次-2
print10(n);
printf("第%d次:\n",kk);
flag=checkprime(n,a);
while(flag==1&&i<10)
{
i++;
print10(n);
aa=rand()%10+5;//注意!n必须大于a
a=d2b(aa);
flag=checkprime(n,a);
printf("ok%d\n",aa);
}
if(i==10)
{
i=0;
print10(n);
printf("该数肯定是素数!\n");
}
printf("\n");
}
}
运行结果如下:
原文:http://blog.csdn.net/tengweitw/article/details/23952839
作者:nineheadedbird
【算法编程】基于Miller-Rabin的大素数测试的更多相关文章
- Miller_Rabbin大素数测试
伪素数: 如果存在和n互素的正整数a满足a^(n-1)≡1(mod n),则n是基于a的伪素数. 是伪素数但不是素数的个数是非常非常少的,所以如果一个数是伪素数,那么他几乎是素数. Miller_Ra ...
- Miller-Rabin大素数测试模板
根据费马小定理: 对于素数n,a(0<a<n),a^(n-1)=1(mod n) 如果对于一个<n的正整数a,a^(n-1)!=1(mod n),则n必不是素数. 然后就可以随机生成 ...
- Miller Rabin 大素数测试
PS:本人第一次写随笔,写的不好请见谅. 接触MillerRabin算法大概是一年前,看到这个算法首先得为它的神奇之处大为赞叹,竟然可以通过几次随机数据的猜测就能判断出这数是否是素数,虽然说是有误差率 ...
- 大素数测试的Miller-Rabin算法
Miller-Rabin算法本质上是一种概率算法,存在误判的可能性,但是出错的概率非常小.出错的概率到底是多少,存在严格的理论推导. 一.费马小定理 假如p是质数,且gcd(a,p)=1,那么 a(p ...
- 大素数测试 求因子 poj 1811
抄别人的 #include<stdio.h> #include<string.h> #include<algorithm> #include<stdlib.h ...
- hdu 6169 Senior PanⅡ Miller_Rabin素数测试+容斥
Senior PanⅡ Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 524288/524288 K (Java/Others) Pr ...
- 【数论基础】素数判定和Miller Rabin算法
判断正整数p是否是素数 方法一 朴素的判定
- Miller Rabin素数检测与Pollard Rho算法
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是 ...
- (Miller Rabin算法)判断一个数是否为素数
1.约定 x%y为x取模y,即x除以y所得的余数,当x<y时,x%y=x,所有取模的运算对象都为整数. x^y表示x的y次方.乘方运算的优先级高于乘除和取模,加减的优先级最低. 见到x^y/z这 ...
随机推荐
- Scikit-learn:模型评估Model evaluation 之绘图
http://blog.csdn.net/pipisorry/article/details/53001866 绘制ROC曲线 def plotRUC(yt, ys, title=None): ''' ...
- React Native自定义导航条
Navigator和NavigatorIOS 在开发中,需要实现多个界面的切换,这时候就需要一个导航控制器来进行各种效果的切换.在React Native中RN为我们提供了两个组件:Navigator ...
- Android Topeka介绍
概述 当你已经做Android开发一段时间,并苦于进入瓶颈,这个时候阅读一些优秀App的源码是最好的学习进阶方式,前几天,邀请去参加一个Android大会,我作为其中一个演讲者,专门讲解了Androi ...
- CUSTOM.PLL的使用
在开发中对系统标准form的修改一般不建议修改系统原有FORM,对所需要修改的内容一般写在CUSTOM.PLL里即可,应为每个form运行的时候都会调用CUSTOM.PLL具体概念性东西可参考网上资料 ...
- java中&和&&的区别 位运算
1.1. 逻辑与的运算符功能 1.1.1. 测试&& public static void main(String[] args) { int x=5; if (x==6 && ...
- 15 ActionProvider代码例子
Menu文件夹下代码: <menu xmlns:android="http://schemas.android.com/apk/res/android" > <! ...
- Servlet之Session处理
HttpSession 对象中可用的几个重要的方法: 1 public Object getAttribute(String name) 该方法返回在该 session 会话中具有指定名称的对象 ...
- UNIX网络编程——Socket通信原理和实践
我们深谙信息交流的价值,那网络中进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时,QQ进程怎么与服务器或你好友所在的QQ进程通信?这些都得靠so ...
- GCD API记录(二)
前言 这是关于GCD的第二篇文章,GCD的API有100多个,通过快捷键Option + 单击,可以在Reference中的Grand Central Dispatch (GCD) Reference ...
- JavaScript介绍-javaScript学习之旅(一)
javaScript简介 1.javaScript是互联网上最流行的脚本语言,这门可用于web和html,更可广泛用于服务器端,pc端,移动端. 2.javaScript脚本语言: javaScrip ...