【ZOJ 3609】Modular Inverse 最小乘法逆元
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m)
. This is equivalent to ax≡1 (mod m)
.
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8 题解:
最小乘法逆元:由ax≡1 (mod m)得:
转化为解线性方程ax+by=1
需要注意的地方:最小解取模时不能写成(x%t+t)%t 因为此题要的是正数解 这样写有时会输出0
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=;y=;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-a/b*y;
return r;
}
void work(ll a,ll b,ll c)
{
ll x,y;
ll r=exgcd(a,b,x,y);
if(c%r!=){
printf("Not Exist\n");
return ;
}
x*=c/r;
ll t=b/r;
if(t<)t=-t;
x%=t;
if(x<=)x+=t;
printf("%lld\n",x);
}
int main()
{
int T;
ll a,b;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&a,&b);
work(a,b,);
}
return ;
}
【ZOJ 3609】Modular Inverse 最小乘法逆元的更多相关文章
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ——3609 Modular Inverse
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ 3609 Modular Inverse(扩展欧几里得)题解
题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 ...
- ZOJ 3609 Modular Inverse
点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x, ...
- ZOJ 3609 Modular Inverse(扩展欧几里德)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicat ...
- zjuoj 3609 Modular Inverse
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 Modular Inverse Time Limit: 2 Seco ...
- 【ZOJ】3609 Modular Inverse
1. 题目描述求乘法逆元. 2. 基本思路利用扩展gcd求逆元,模板题目. 3. 代码 /* 3609 */ #include <iostream> #include <sstrea ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【ZOJ 3609】Modular Inverse
题 题意 求a关于m的乘法逆元 分析 a x ≡ 1 (mod m) 等价于 ax+my=1 求x的最小正数(不能是0,我就WA在这里了). 当m=1时,或者 gcd(a,m)!=1 时x不存在. 所 ...
随机推荐
- HDFS架构
- Python处理图片缩略图
CPU 密集型任务和 IO 密集型任务分别选择多进程multiprocessing.Pool.map 和多线程库multiprocessing.dummy.Pool.map import os imp ...
- Scrum 冲刺 第三日
Scrum 冲刺 第三日 目录 要求 项目链接 燃尽图 问题 今日任务 明日计划 成员贡献量 要求 各个成员今日完成的任务(如果完成的任务为开发或测试任务,需给出对应的Github代码签入记录截图:如 ...
- vue 的模板编译—ast(抽象语法树) 详解与实现
首先AST是什么? 在计算机科学中,抽象语法树(abstract syntax tree或者缩写为AST),或者语法树(syntax tree),是源代码的抽象语法结构的树状表现形式,这里特指编程语言 ...
- js解决IE8不支持html5,css3的问题(respond.js 的使用注意)
IE8.0及以下不支持html5,css3的解析.目前为止IE8以下的版本使用率在10%左右,网站还是有必要兼容的. 1,在你的所有css最后判断引入两个js文件. html5.js 是用来让ie8 ...
- Python扩展模块——自动化(testlinkAPI的使用)
使用TESTLINKAPI首先要安装TestLink_API_Python_client-0.6.4(当前最新版本) 目前只使用到了通过api获取testlink中的自定义字段and值 url = ' ...
- 第四章 JavaScript操作DOM对象
第四章 JavaScript操作DOM对象 一.DOM操作 DOM是Document Object Model的缩写,即文档对象模型,是基于文档编程的一套API接口,1988年,W3C发布了第一级 ...
- AngularJS1.X学习笔记7-过滤器
最近参加笔试被虐成狗了,感觉自己的算法太弱了.但是还是先花点事件将这个AngularJS学习完.今天学习filter 一.内置过滤器 (1)过滤单个数据值 <!DOCTYPE html> ...
- HttpWebRequest,HttpWebResponse C# 代码调用webservice,参数为xml
先上调用代码 public static string PostMoths(string url, string Json) { System.Net.HttpWebRequest request; ...
- 使用URL访问http服务器
一.概念定义 1.URI - 通用资源标识符 URI通常由三部分组成, 资源访问机制 存放资源的主机名 资源自身名称 如: http://www.baidu.com/html http://www.b ...