【ZOJ 3609】Modular Inverse 最小乘法逆元
The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1≡x (mod m). This is equivalent to ax≡1 (mod m).
Input
There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.
Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.
Output
For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".
Sample Input
3
3 11
4 12
5 13
Sample Output
4
Not Exist
8 题解:
最小乘法逆元:由ax≡1 (mod m)得:转化为解线性方程ax+by=1
需要注意的地方:最小解取模时不能写成(x%t+t)%t 因为此题要的是正数解 这样写有时会输出0
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=;y=;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-a/b*y;
return r;
}
void work(ll a,ll b,ll c)
{
ll x,y;
ll r=exgcd(a,b,x,y);
if(c%r!=){
printf("Not Exist\n");
return ;
}
x*=c/r;
ll t=b/r;
if(t<)t=-t;
x%=t;
if(x<=)x+=t;
printf("%lld\n",x);
}
int main()
{
int T;
ll a,b;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&a,&b);
work(a,b,);
}
return ;
}
【ZOJ 3609】Modular Inverse 最小乘法逆元的更多相关文章
- ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ——3609 Modular Inverse
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ 3609 Modular Inverse(扩展欧几里得)题解
题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 ...
- ZOJ 3609 Modular Inverse
点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x, ...
- ZOJ 3609 Modular Inverse(扩展欧几里德)
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicat ...
- zjuoj 3609 Modular Inverse
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 Modular Inverse Time Limit: 2 Seco ...
- 【ZOJ】3609 Modular Inverse
1. 题目描述求乘法逆元. 2. 基本思路利用扩展gcd求逆元,模板题目. 3. 代码 /* 3609 */ #include <iostream> #include <sstrea ...
- 51nod1256(乘法逆元)
题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...
- 【ZOJ 3609】Modular Inverse
题 题意 求a关于m的乘法逆元 分析 a x ≡ 1 (mod m) 等价于 ax+my=1 求x的最小正数(不能是0,我就WA在这里了). 当m=1时,或者 gcd(a,m)!=1 时x不存在. 所 ...
随机推荐
- 基于Python的Web应用开发实践总结
基于Python的Web应用开发学习总结 项目地址 本次学习采用的是Flask框架.根据教程开发个人博客系统.博客界面如图所示. 整个学习过程收获很多,以下是学习总结. 1.virtualenv ...
- verilog学习笔记(0)
assign赋值语句根本不允许出现在always语句块中 位于begin/end块内的多条阻塞赋值语句是串行执行的; 但是多条非阻塞赋值语句却是并行执行的,这些非阻塞赋值语句都会在其中任何一条语句执行 ...
- Session的过期时间如何计算?
在生成session的时候,会设置一个session过期时间.session的过期时间并不是从生成session对象开始计算,超过过期时间,session就失效了. 而是每当一个浏览器请求,sessi ...
- 一个CSS简单入门网站
讲的知识简单明了,很实用: http://zh.learnlayout.com/
- ASP.NET Web API编程——模型验证与绑定
1.模型验证 使用特性约束模型属性 可以使用System.ComponentModel.DataAnnotations提供的特性来限制模型. 例如,Required特性表示字段值不能为空,Range特 ...
- CentOS7下安装python-pip
一.检查是否已经安装 检查linux有没有安装python-pip包,直接执行:: yum install python-pip 二.安装 pip install 1.没有python-pip包就执行 ...
- Groovy入门(2-2)Groovy的eclipse插件安装
1.安装eclipse插件 启动eclipse,点击help -> Install New Software... 在弹出的窗口中点击:Add... Groovy插件的地址:http://dis ...
- CentOS ping www.baidu.com 报错 name or service not know
今天尝试安装了centos系统 玩一玩 刚刚装好的操作系统 ping www.baidu.com的时候 报出 name or service not known 查了好多资料,都没有很好的解决 最后 ...
- 日推20单词 Day03
1.occur v. 发生,发现 2.harvest n.收获,丰收 vt.收割,得到 3.crop n.庄稼,收成 4.yield n.产量 v.产出,屈服 5.field n.田野 6.featu ...
- Zookeeper通过java创建、查看、修改、删除znode
本章主要介绍zookeeper如何使用,其实通过zkCli.cmd我们是可以执行一些操作的:声明:参考及转自<http://www.blogjava.net/BucketLi/archive/2 ...