The modular modular multiplicative inverse of an integer a modulo m is an integer x such that a-1x (mod m). This is equivalent to ax≡1 (mod m).

Input

There are multiple test cases. The first line of input is an integer T ≈ 2000 indicating the number of test cases.

Each test case contains two integers 0 < a ≤ 1000 and 0 < m ≤ 1000.

Output

For each test case, output the smallest positive x. If such x doesn't exist, output "Not Exist".

Sample Input

3
3 11
4 12
5 13

Sample Output

4
Not Exist
8 题解:
最小乘法逆元:由ax≡1 (mod m)得:转化为解线性方程ax+by=1
需要注意的地方:最小解取模时不能写成(x%t+t)%t 因为此题要的是正数解 这样写有时会输出0
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long ll;
ll exgcd(ll a,ll b,ll &x,ll &y)
{
if(!b)
{
x=;y=;
return a;
}
ll r=exgcd(b,a%b,x,y);
ll t=x;
x=y;
y=t-a/b*y;
return r;
}
void work(ll a,ll b,ll c)
{
ll x,y;
ll r=exgcd(a,b,x,y);
if(c%r!=){
printf("Not Exist\n");
return ;
}
x*=c/r;
ll t=b/r;
if(t<)t=-t;
x%=t;
if(x<=)x+=t;
printf("%lld\n",x);
}
int main()
{
int T;
ll a,b;
scanf("%d",&T);
while(T--){
scanf("%lld%lld",&a,&b);
work(a,b,);
}
return ;
}

 

【ZOJ 3609】Modular Inverse 最小乘法逆元的更多相关文章

  1. ZOJ 3609 Modular Inverse(拓展欧几里得求最小逆元)

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  2. ZOJ——3609 Modular Inverse

    Modular Inverse Time Limit: 2 Seconds      Memory Limit: 65536 KB The modular modular multiplicative ...

  3. ZOJ 3609 Modular Inverse(扩展欧几里得)题解

    题意:求乘法逆元最小正正数解 思路:a*x≡1(mod m),则称x 是 a 关于 m 的乘法逆元,可以通过解a*x + m*y = 1解得x.那么通过EXGcd得到特解x1,最小正解x1 = x1 ...

  4. ZOJ 3609 Modular Inverse

    点我看题目 题意 : 这个题是求逆元的,怎么说呢,题目看着很别扭....就是给你a和m,让你求一个最小的x满足a-1≡x (mod m).或者ax≡1 (mod m).通俗点说呢,就是找一个最小的x, ...

  5. ZOJ 3609 Modular Inverse(扩展欧几里德)

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4712 The modular modular multiplicat ...

  6. zjuoj 3609 Modular Inverse

    http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3609 Modular Inverse Time Limit: 2 Seco ...

  7. 【ZOJ】3609 Modular Inverse

    1. 题目描述求乘法逆元. 2. 基本思路利用扩展gcd求逆元,模板题目. 3. 代码 /* 3609 */ #include <iostream> #include <sstrea ...

  8. 51nod1256(乘法逆元)

    题目链接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1256 题意:中文题诶~ 思路: M, N 互质, 求满足 K ...

  9. 【ZOJ 3609】Modular Inverse

    题 题意 求a关于m的乘法逆元 分析 a x ≡ 1 (mod m) 等价于 ax+my=1 求x的最小正数(不能是0,我就WA在这里了). 当m=1时,或者 gcd(a,m)!=1 时x不存在. 所 ...

随机推荐

  1. 基于Python的Web应用开发实践总结

    基于Python的Web应用开发学习总结 项目地址   本次学习采用的是Flask框架.根据教程开发个人博客系统.博客界面如图所示. 整个学习过程收获很多,以下是学习总结. 1.virtualenv ...

  2. verilog学习笔记(0)

    assign赋值语句根本不允许出现在always语句块中 位于begin/end块内的多条阻塞赋值语句是串行执行的; 但是多条非阻塞赋值语句却是并行执行的,这些非阻塞赋值语句都会在其中任何一条语句执行 ...

  3. Session的过期时间如何计算?

    在生成session的时候,会设置一个session过期时间.session的过期时间并不是从生成session对象开始计算,超过过期时间,session就失效了. 而是每当一个浏览器请求,sessi ...

  4. 一个CSS简单入门网站

    讲的知识简单明了,很实用: http://zh.learnlayout.com/

  5. ASP.NET Web API编程——模型验证与绑定

    1.模型验证 使用特性约束模型属性 可以使用System.ComponentModel.DataAnnotations提供的特性来限制模型. 例如,Required特性表示字段值不能为空,Range特 ...

  6. CentOS7下安装python-pip

    一.检查是否已经安装 检查linux有没有安装python-pip包,直接执行:: yum install python-pip 二.安装 pip install 1.没有python-pip包就执行 ...

  7. Groovy入门(2-2)Groovy的eclipse插件安装

    1.安装eclipse插件 启动eclipse,点击help -> Install New Software... 在弹出的窗口中点击:Add... Groovy插件的地址:http://dis ...

  8. CentOS ping www.baidu.com 报错 name or service not know

    今天尝试安装了centos系统 玩一玩 刚刚装好的操作系统 ping www.baidu.com的时候  报出 name or service not known 查了好多资料,都没有很好的解决 最后 ...

  9. 日推20单词 Day03

    1.occur v. 发生,发现 2.harvest n.收获,丰收 vt.收割,得到 3.crop n.庄稼,收成 4.yield n.产量 v.产出,屈服 5.field n.田野 6.featu ...

  10. Zookeeper通过java创建、查看、修改、删除znode

    本章主要介绍zookeeper如何使用,其实通过zkCli.cmd我们是可以执行一些操作的:声明:参考及转自<http://www.blogjava.net/BucketLi/archive/2 ...