矩阵树Matrix-Tree定理与行列式
简单入门一下矩阵树Matrix-Tree定理。(本篇目不涉及矩阵树相关证明)
一些定义与定理
- 对于一个无向图 G ,它的生成树个数等于其基尔霍夫Kirchhoff矩阵任何一个N-1阶主子式的行列式的绝对值。
- 所谓的N-1阶主子式就是对于一个任意的一个 r ,将矩阵的第 r 行和第 r 列同时删去得到的新矩阵。
- 基尔霍夫Kirchhoff矩阵的一种求法:
基尔霍夫Kirchhoff矩阵 K =度数矩阵 D - 邻接矩阵 A
基尔霍夫Kirchhoff矩阵的具体构造
- 度数矩阵D:是一个 ${N}\times{N}$ 的矩阵,其中
$D[i][j]=0\;{(i}\neq{j)}$,$D[i][i]=i号点的度数$
- 邻接矩阵A:是一个 ${N}\times{N}$ 的矩阵,其中
${A[i][i]=0}\;{,}\;{A[i][j]=A[j][i]=i,j之间的边数}$
- 然后基尔霍夫Kirchhoff矩阵K=D-A
- 举个例子,对于如下的无向图,三个矩阵分别为

行列式det(K)求法
- 已经得出了基尔霍夫Kirchhoff矩阵,那么随便去掉某一行一列并计算出新矩阵的行列式,其绝对值即为生成树个数。
- ${det(K)=}\sum_{P}^{ }\;{(}{(-1)}^{\tau{(P)}}\times{K}_{1,p1}\times{K}_{2,p2}\times{K}_{3,p3}\times\cdots\times{K}_{N,pN}{)}$
- 上面的式子中的 P 为 1~N 的任意一个排列。$\tau{(P)}$表示排列 P 的逆序对数。而那个求和式的每一项可以看做是在矩阵中选出N个数,使得他们的行列都不重合。
- 求和式共有$N!$项,暴力求法的复杂度 ${O(N!)}\times{N}$
- 这个复杂度过高了,看完了下面的行列式性质,然后引出优化求解方法。
行列式的性质
- 性质.1 互换矩阵的两行(列),行列式变号。
这个需要简单说明一下。
考虑对于原矩阵 K,我们可以得到其行列式的求和式:
${det(K)=}\sum_{P}^{ }\;{(}{(-1)}^{\tau{(P)}}\times{K}_{1,p1}\times{K}_{2,p2}\times{K}_{3,p3}\times\cdots\times{K}_{N,pN}{)}$
若交换某两行的位置后得到了 K' 矩阵,若写出其行列式的求和式,不难发现,如果不看符号位的变化,只看每一个乘积项,那么这两个的矩阵的行列式的求和式是完全相同的。我们把相同的乘积项移到对应的位置,如图示:

但是很显然,两个矩阵的这一项对应的排列 P 和 P' 不同:
P :1 2 4 3
P':3 2 4 1
那这个符号位的变化是什么呢?
从例子看得出来,τ(P) = 1 ,符号位为 –1;τ(P')=4,符号位为 1。
那是不是都是这样的呢?
即原来是 -1,现在就是 1;即原来是 1,现在就是 -1?逆序对变化量为奇数?
答案是肯定的,证明如下:

由此可知,逆序对数的变化量为奇数,即两个det()求和式的对应的每一项的符号位都相反,所以互换矩阵的两行(列),行列式变号。
(有了这个性质,下面的就比较简单了。)
- 性质.2 如果矩阵有两行(列)完全相同,则行列式为 0
证明,由性质.1可知:因为交换这两行,得到的矩阵和原来相同,但是又要变号,则行列式的值只能为 0。
- 性质.3 如果矩阵的某一行(列)中的所有元素都乘以同一个数k,新行列式的值等于原行列式的值乘上数k。
这个的证明就是把那个求和式的每一项都提出一个公因子k就好了。
- 推论 如果矩阵的某一行(列)中的所有元素都有一个公因子k,则可以把这个公因子k提到行列式求和式的外面。
- 性质.3 如果矩阵有两行(列)成比例(比例系数k),则行列式的值为 0
证明:也是把其中一行提出一个公因数k,那么剩下的det( )求和式所代表的矩阵中存在一行或一列完全相同,则值为 0。
- 性质.4 如果把矩阵的某一行(列)加上另一行(列)的k倍,则行列式的值不变。
证明:可以从求和式子的每一项的那一行的那个元素下手,
把det( )求和式拆成两个 det( )求和式:
det1( )与原矩阵的行列式求法相同
det2( )所代表的矩阵中有两行成比例,比例系数为k,值为0 。
所以相比原来的行列式,值不变。
优化行列式的求法
- 首先对于这样一个矩阵:

注意到了么,是一个上三角矩阵(左下半部分的元素值为 0)。
其行列式的值为对角线的乘积,(同理下三角矩阵)
因为只有 P = 1 2 3 4 时,乘积项中才没有 0出现。
- 同时注意到性质.4,所以采用高斯消元的方法,把矩阵消为一个上三角矩阵后,然后求出对角线的积,便是该矩阵的行列式的值。
- 复杂度 O(N3),快了很多。
- 另外再加一个。
如果要求的矩阵不允许出现实数,且需要取模。
则采用辗转相除的高斯消元法。时间复杂度多一个 O(logN)
矩阵树Matrix-Tree定理与行列式的更多相关文章
- @总结 - 7@ 生成树计数 —— matrix - tree 定理(矩阵树定理)与 prüfer 序列
目录 @0 - 参考资料@ @0.5 - 你所需要了解的线性代数知识@ @1 - 矩阵树定理主体@ @证明 part - 1@ @证明 part - 2@ @证明 part - 3@ @证明 part ...
- 【证明与推广与背诵】Matrix Tree定理和一些推广
[背诵手记]Matrix Tree定理和一些推广 结论 对于一个无向图\(G=(V,E)\),暂时钦定他是简单图,定义以下矩阵: (入)度数矩阵\(D\),其中\(D_{ii}=deg_i\).其他= ...
- 数学-Matrix Tree定理证明
老久没更了,冬令营也延期了(延期后岂不是志愿者得上学了?) 最近把之前欠了好久的债,诸如FFT和Matrix-Tree等的搞清楚了(啊我承认之前只会用,没有理解证明--),FFT老多人写,而Matri ...
- BZOJ.4031.[HEOI2015]小Z的房间(Matrix Tree定理 辗转相除)
题目链接 辗转相除解行列式的具体实现? 行列式的基本性质. //864kb 64ms //裸的Matrix Tree定理.练习一下用辗转相除解行列式.(因为模数不是质数,所以不能直接乘逆元来高斯消元. ...
- [bzoj1016][JSOI2008]最小生成树计数 (Kruskal + Matrix Tree 定理)
Description 现在给出了一个简单无向加权图.你不满足于求出这个图的最小生成树,而希望知道这个图中有多少个不同的最小生成树.(如果两颗最小生成树中至少有一条边不同,则这两个最小生成树就是不同的 ...
- HDU 4305 Lightning Matrix Tree定理
题目链接:https://vjudge.net/problem/HDU-4305 解法:首先是根据两点的距离不大于R,而且中间没有点建立一个图.之后就是求生成树计数了. Matrix-Tree定理(K ...
- SPOJ.104.Highways([模板]Matrix Tree定理 生成树计数)
题目链接 \(Description\) 一个国家有1~n座城市,其中一些城市之间可以修建高速公路(无自环和重边). 求有多少种方案,选择修建一些高速公路,组成一个交通网络,使得任意两座城市之间恰好只 ...
- BZOJ.4894.天赋(Matrix Tree定理 辗转相除)
题目链接 有向图生成树个数.矩阵树定理,复习下. 和无向图不同的是,度数矩阵改为入度矩阵/出度矩阵,分别对应外向树/内向树. 删掉第i行第i列表示以i为根节点的生成树个数,所以必须删掉第1行第1列. ...
- BZOJ.1016.[JSOI2008]最小生成树计数(Matrix Tree定理 Kruskal)
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性 ...
- [模板]Matrix Tree定理
结论:一个图的生成树个数等于它的度数矩阵减邻接矩阵得到的矩阵(基尔霍夫矩阵)的任意一个n-1阶主子式的行列式的绝对值 证明:不会 求法:高斯消元 例题:[HEOI2013]小Z的房间 #include ...
随机推荐
- C语言博客作业—结构体
一.PTA实验作业 题目1:结构体数组按总分排序 1. 本题PTA提交列表 2. 设计思路 void calc //函数calc求出p指针所指的结构体数组中 n 名学生各自的总分 { 定义循环变量i: ...
- pop 一个viewController时候会有键盘闪现出来又消失
原因是alertview关闭影响了系统其他的动画导致的.要么延迟调用,要么自己做一个alertview. iOS 8.3,dismiss alert view时系统会尝试恢复之前的keyboard i ...
- DML数据操作语言之常用函数
所谓函数,就是输入某一值,得到相应的输出结果的功能.相当于一个加工厂,给了原料,最终产出成品. 其中原料 就是参数(parameter). 产品 就是返回值. 函数大致可以分为以下五个种类: 算术函数 ...
- c# windows service 实现监控其他程序是否被关闭,关闭则报警
namespace MonitorService { public partial class MonitorSv : ServiceBase { string AppName = "&qu ...
- SQL SERVER 游标的使用
首先,关于什么是游标大家可以看看这篇文章,介绍得非常详细!! SQL Server基础之游标 下面是我自己的应用场景-- 有个需求,需要把数据库表里面某一个字段的值设为随机不重复的值. 表是这样的: ...
- __all__
相信很多人第一次见到这个__all__都很好奇,他有什么作用 那他到底有什么作用呢? 先上代码 from scrapy.utils.reqser import request_to_dict, req ...
- java基础复习(1)
用记事本写java文件 打开记事本,编写java文件,需要注意文件名与类名要相同 注意文件的后缀名(也叫拓展名)改为.java java对大小写是敏感的 public class nihao{\ pu ...
- SpringBoot应用的监控与管理
spring-boot-starter-actuator模块 /health /autoconfig /beans /configprops:应用配置属性信息 /env:环境属性,如:环境变量.jvm ...
- HTTP协议扫盲(七)请求报文之 GET、POST-FORM 和 POST-FILE
一.get 1.页面代码 2.请求报文 3.小结 get请求没有报文体,所以请求报文没有content-type url上的query参数param11=val11¶m12=val12 ...
- gradle入门(1-7)eclipse和gradle集成插件的安装和使用
一.安装gradle插件:buildship 1.安装插件 gradle默认的本地缓存库在c盘user目录下的.gradle文件夹下,安装好gradle后,可以添加环境变量GRADLE_USER_HO ...