bzoj 2229: [Zjoi2011]最小割
Description
小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。
解题报告
对于最小割,其实本质不同的只有n-1个,考虑怎么找出这n-1个
可以简单证明:最小割不会相交,可以简单的用反证法证明
考虑一个四格矩形1,2,3,4四个区域(象限),分割线分别为A,B,C,D。
假设1,4的最小割为(A,C) 2,3的最小割为(B,D),那么可以推出 \(A<B\),\(C<D\),所以2,3的最小割不为 (A,C) 产生矛盾,固不相交.
既然不相交,考虑每次找出本质不同的,因为不相交,所以可以考虑分治.
找出当前层的最小割,化为S,T两个集合,然后再选择S,T集合分别做同样的操作,因为最小割不相交,所以找出的一定不同,对于一个点对,在每一个最小割里取Min即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=155,inf=2e9,M=3005;
int id[N],n,m,b[N],head[N],nxt[M<<1],to[M<<1],dis[M<<1],num=1,a[N][N],T,S;
void link(int x,int y,int z){nxt[++num]=head[x];to[num]=y;dis[num]=z;head[x]=num;}
void addedge(int x,int y,int z){link(x,y,z);link(y,x,z);}
struct edge{int x,y,dis;}e[M];
int q[N],dep[N];
il bool bfs(){
int x,u,t=0,sum=1;
memset(dep,0,sizeof(dep));
dep[S]=1;q[1]=S;
while(t!=sum){
x=q[++t];
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(dep[u] || dis[i]<=0)continue;
dep[u]=dep[x]+1;q[++sum]=u;
}
}
return dep[T];
}
il int dfs(int x,int flow){
if(x==T || !flow)return flow;
RG int u,tot=0,tmp;
for(int i=head[x];i;i=nxt[i]){
u=to[i];
if(dis[i]<=0 || dep[u]!=dep[x]+1)continue;
tmp=dfs(u,Min(flow,dis[i]));
dis[i]-=tmp;dis[i^1]+=tmp;
tot+=tmp;flow-=tmp;
if(!flow)break;
}
if(!tot)dep[x]=-1;
return tot;
}
il int maxflow(int ss,int tt){
S=ss;T=tt;int tot=0,tmp;
while(bfs()){
tmp=dfs(S,inf);
while(tmp)tot+=tmp,tmp=dfs(S,inf);
}
return tot;
}
void Clear(){memset(head,0,sizeof(head));num=1;}
il void solve(int l,int r){
if(!(l^r))return ;
int L=l,R=r;
Clear();
for(RG int i=1;i<=m;i++)
addedge(e[i].x,e[i].y,e[i].dis);
int tmp=maxflow(id[l],id[r]);
for(int i=1;i<=n;i++)
if(dep[i])for(RG int j=1;j<=n;j++)if(!dep[j])a[i][j]=a[j][i]=Min(a[i][j],tmp);
for(int i=l;i<=r;i++){
if(dep[id[i]])b[L++]=id[i];
else b[R--]=id[i];
}
for(int i=l;i<=r;i++)id[i]=b[i];
solve(l,R);solve(L,r);
}
void work()
{
Clear();
int x,y,z;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
e[i].x=x;e[i].y=y;e[i].dis=z;
}
for(int i=1;i<=n;i++)
for(RG int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=inf;
for(int i=1;i<=n;i++)id[i]=i;
solve(1,n);
int Q;cin>>Q;
while(Q--){
scanf("%d",&x);
int ans=0;
for(int i=1;i<=n;i++)
for(RG int j=i+1;j<=n;j++)
if(a[i][j]<=x)ans++;
printf("%d\n",ans);
}
}
int main()
{
int T;cin>>T;
while(T--){
work();
if(T)puts("");
}
return 0;
}
bzoj 2229: [Zjoi2011]最小割的更多相关文章
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
- BZOJ.2229.[ZJOI2011]最小割(最小割树)
题目链接 题意:给定一张无向图,求任意两点之间的最小割. 在所有点中任选两个点作为源点\(S\).汇点\(T\),求它们之间的最小割\(ans\),并把原图分成两个点集\(S',T'\),用\(ans ...
- bzoj 2229: [Zjoi2011]最小割【Gomory–Hu tree最小割树】
这个算法详见http://www.cnblogs.com/lokiii/p/8191573.html 求出两两之间最小割之后暴力统计即可 #include<iostream> #inclu ...
- ●BOZJ 2229 [Zjoi2011]最小割
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2229 题解: 首先先去看看这个博客:http://blog.csdn.net/jyxjyx2 ...
- 2229: [Zjoi2011]最小割(最小割树)
Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中 ...
- bzoj千题计划139:bzoj2229: [Zjoi2011]最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...
- BZOJ2229: [Zjoi2011]最小割
题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...
随机推荐
- 《Language Implementation Patterns》之访问&重写语法树
每个编程的人都学习过树遍历算法,但是AST的遍历并不是开始想象的那么简单.有几个因素会影响遍历算法:1)是否拥有节点的源码:2)是否子节点的访问方式是统一的:3)ast是homogeneous或het ...
- ios swift例子源码网址总结
http://blog.csdn.net/woaifen3344/article/details/40079351 http://www.ruanman.net/swift/learn/4607.ht ...
- 《高级软件测试》Linux平台Jira的安装与配置
现在大部分的程序开发都是在linux下进行的,jira更多的时候是安装在linux上,那么,如何在linux下安装配置jira呢?本文将以Ubuntu 17.10和jira7.5.2为例,对linux ...
- 2017 清北济南考前刷题Day 3 morning
实际得分:100+0+0=100 T1 右上角是必败态,然后推下去 发现同行全是必胜态或全是必败态,不同行必胜必败交叉 列同行 所以n,m 只要有一个是偶数,先手必胜 #include<cstd ...
- Android 扩大 View 的点击区域
有时候,按照视觉图做出来效果后,发现点击区域过小,不好点击,用户体验肯定不好.扩大视图,就会导致整个视觉图变得不好看.那么有没有什么办法在不改变视图大小的前提下扩大点击区域呢? 答案是有! 能够解决这 ...
- Mego开发文档 - 数据库建模
数据库建模 我们还提供了一些其他的特性,用于定制化数据库对应的数据结构. 表映射 框架默认会使用CLR类型名称做为实际数据库的表名,当两者不一致时可以使用该特性强制表名称. [Table(" ...
- gogs详细配置
sudo apt-get update sudo apt-get upgrade sudo adduser git //创建用户 密码 ******* su git//切换到git用户 cd ~ ...
- Jetty入门(1-2)eclipse集成jetty插件并发布运行应用
一.eclipse集成jetty插件 1.从市场安装jetty插件 2.使用jetty插件发布应用和配置运行环境 debug配置默认共用上述run配置 3.使用jetty插件启动运行和停止运行选中的应 ...
- android- 远程调试
最近由于要在另外一台android设备上调试代码,在本机PC上查看其log.两台机器离的比较远, 无法用usb直接连接,于是在网上找了很多资料,最找使用adb connect方法解决了该问题.解决过程 ...
- Bootstrap 做一个简单的母版页
随便搭的一个母版页,不太好看,只是为了看效果....请勿吐槽. 效果如图: 一.新建母版页,引入Bootstrap相关js文件 <link href="../css/bootstrap ...