bzoj 2229: [Zjoi2011]最小割
Description
小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。
解题报告
对于最小割,其实本质不同的只有n-1个,考虑怎么找出这n-1个
可以简单证明:最小割不会相交,可以简单的用反证法证明
考虑一个四格矩形1,2,3,4四个区域(象限),分割线分别为A,B,C,D。
假设1,4的最小割为(A,C) 2,3的最小割为(B,D),那么可以推出 \(A<B\),\(C<D\),所以2,3的最小割不为 (A,C) 产生矛盾,固不相交.
既然不相交,考虑每次找出本质不同的,因为不相交,所以可以考虑分治.
找出当前层的最小割,化为S,T两个集合,然后再选择S,T集合分别做同样的操作,因为最小割不相交,所以找出的一定不同,对于一个点对,在每一个最小割里取Min即可
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
const int N=155,inf=2e9,M=3005;
int id[N],n,m,b[N],head[N],nxt[M<<1],to[M<<1],dis[M<<1],num=1,a[N][N],T,S;
void link(int x,int y,int z){nxt[++num]=head[x];to[num]=y;dis[num]=z;head[x]=num;}
void addedge(int x,int y,int z){link(x,y,z);link(y,x,z);}
struct edge{int x,y,dis;}e[M];
int q[N],dep[N];
il bool bfs(){
int x,u,t=0,sum=1;
memset(dep,0,sizeof(dep));
dep[S]=1;q[1]=S;
while(t!=sum){
x=q[++t];
for(int i=head[x];i;i=nxt[i]){
u=to[i];if(dep[u] || dis[i]<=0)continue;
dep[u]=dep[x]+1;q[++sum]=u;
}
}
return dep[T];
}
il int dfs(int x,int flow){
if(x==T || !flow)return flow;
RG int u,tot=0,tmp;
for(int i=head[x];i;i=nxt[i]){
u=to[i];
if(dis[i]<=0 || dep[u]!=dep[x]+1)continue;
tmp=dfs(u,Min(flow,dis[i]));
dis[i]-=tmp;dis[i^1]+=tmp;
tot+=tmp;flow-=tmp;
if(!flow)break;
}
if(!tot)dep[x]=-1;
return tot;
}
il int maxflow(int ss,int tt){
S=ss;T=tt;int tot=0,tmp;
while(bfs()){
tmp=dfs(S,inf);
while(tmp)tot+=tmp,tmp=dfs(S,inf);
}
return tot;
}
void Clear(){memset(head,0,sizeof(head));num=1;}
il void solve(int l,int r){
if(!(l^r))return ;
int L=l,R=r;
Clear();
for(RG int i=1;i<=m;i++)
addedge(e[i].x,e[i].y,e[i].dis);
int tmp=maxflow(id[l],id[r]);
for(int i=1;i<=n;i++)
if(dep[i])for(RG int j=1;j<=n;j++)if(!dep[j])a[i][j]=a[j][i]=Min(a[i][j],tmp);
for(int i=l;i<=r;i++){
if(dep[id[i]])b[L++]=id[i];
else b[R--]=id[i];
}
for(int i=l;i<=r;i++)id[i]=b[i];
solve(l,R);solve(L,r);
}
void work()
{
Clear();
int x,y,z;
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&x,&y,&z);
e[i].x=x;e[i].y=y;e[i].dis=z;
}
for(int i=1;i<=n;i++)
for(RG int j=i+1;j<=n;j++)
a[i][j]=a[j][i]=inf;
for(int i=1;i<=n;i++)id[i]=i;
solve(1,n);
int Q;cin>>Q;
while(Q--){
scanf("%d",&x);
int ans=0;
for(int i=1;i<=n;i++)
for(RG int j=i+1;j<=n;j++)
if(a[i][j]<=x)ans++;
printf("%d\n",ans);
}
}
int main()
{
int T;cin>>T;
while(T--){
work();
if(T)puts("");
}
return 0;
}
bzoj 2229: [Zjoi2011]最小割的更多相关文章
- bzoj 2229 [Zjoi2011]最小割(分治+最小割)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2229 [题意] 回答若干个关于割不超过x的点对数目的询问. [思路] [最小割最多有n ...
- BZOJ.2229.[ZJOI2011]最小割(最小割树)
题目链接 题意:给定一张无向图,求任意两点之间的最小割. 在所有点中任选两个点作为源点\(S\).汇点\(T\),求它们之间的最小割\(ans\),并把原图分成两个点集\(S',T'\),用\(ans ...
- bzoj 2229: [Zjoi2011]最小割【Gomory–Hu tree最小割树】
这个算法详见http://www.cnblogs.com/lokiii/p/8191573.html 求出两两之间最小割之后暴力统计即可 #include<iostream> #inclu ...
- ●BOZJ 2229 [Zjoi2011]最小割
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2229 题解: 首先先去看看这个博客:http://blog.csdn.net/jyxjyx2 ...
- 2229: [Zjoi2011]最小割(最小割树)
Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中 ...
- bzoj千题计划139:bzoj2229: [Zjoi2011]最小割
http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...
- BZOJ2229: [Zjoi2011]最小割
题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...
- bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)
2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...
- 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)
[BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...
随机推荐
- 理解Python迭代对象、迭代器、生成器
作者:zhijun liu链接:https://zhuanlan.zhihu.com/p/24376869来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 本文源自RQ作 ...
- sys模块的使用
import sys,time ''' if sys.argv[1]=='sleepy': print('nongsi') else: print('....')''' #进度条 for i in r ...
- AWS EC2服务器的HTTPS负载均衡器配置过程
AWS EC2服务器配置负载均衡器步骤: 1.普通负载均衡器 至少两台EC2实例,这里以Centos6.7系统为例 启动之后先安装个apache的httpd服务器默认80端口,或者使用其他服务 ...
- nyoj 矩形个数
矩形的个数 时间限制:1000 ms | 内存限制:65535 KB 难度:1 描述 在一个3*2的矩形中,可以找到6个1*1的矩形,4个2*1的矩形3个1*2的矩形,2个2*2的矩形,2个3 ...
- auto_prepend_file与auto_append_file使用方法
auto_prepend_file与auto_append_file使用方法 如果需要将文件require到所有页面的顶部与底部. 第一种方法:在所有页面的顶部与底部都加入require语句. 例如: ...
- JAVA_SE基础——编码规范&代码编写规则
这次我来给大家说明下编码规范&代码编写规则 ↓ 编码规范可以帮助程序员在编程时注意一些细节问题,提高程序的可读性,让程序员能够尽快地理解新的代码,并帮助大家编写出规范的利于维护的Java代码 ...
- LeetCode & Q88-Merge Sorted Array-Easy
Array Two Pointers Description: Given two sorted integer arrays nums1 and nums2, merge nums2 into nu ...
- 剑指offer-数据流中的中位数
题目描述 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. ...
- vueJs 源码解析 (三) 具体代码
vueJs 源码解析 (三) 具体代码 在之前的文章中提到了 vuejs 源码中的 架构部分,以及 谈论到了 vue 源码三要素 vm.compiler.watcher 这三要素,那么今天我们就从这三 ...
- Mego开发文档 - 基本保存操作
基本保存操作 在Mego中没有更改跟踪,也就是说所有的新增.更新及删除都需要开发者自行判断.Mego会最为实际的将各个数据操作提交给数据库并执行. 添加数据 using (var db = new O ...