1、基本介绍

  随着分词在信息检索领域应用的越来越广泛,分词这门技术对大家并不陌生。对于英文分词处理相对简单,经过拆分单词、排斥停止词、提取词干的过程基本就能实现英文分词,单对于中文分词而言,由于语义的复杂导致分词并没英文分词那么简单,一般都是通过相关的分词工具来实现,目前比较常用的有庖丁分词以及IKAnalyzer等。这里我们主要通过一个简单的Demo聊聊IKAnalyzer的基本使用。IKAnalyzer是一个开源的,基于java开发的分词工具包,它独立于Lucene项目,同时提供了Lucene的默认实现。

2、IKAnalyzer结合Lucene实现简单的中文分词

  我们通过一个基本的Demo来实践说明,步骤如下:

step1:准备相关的Jar依赖,lucene-core-5.1.0.jar、ik.jar,然后新建项目,引入相关依赖项目结构如下:

IkDemo-src

     -con.funnyboy.ik

-IKAnalyzer.cfg.xml

     -stopword.dic

-ext.dic

-Reference Libraries

     -lucene-core-5.1.0.jar

     -ik.jar

IKAnalyzer.cfg.xml:配置扩展词典以及停止词典 内容如下:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>   <comment>IK Analyzer 扩展配置</comment>

  <entry key="ext_dict">ext.dic;</entry>

  <entry key="ext_stopwords">stopword.dic;</entry>

</properties>

其中的ext.dic配置自己的扩展字典,stopword.dic配置自己的扩展停止词字典

step2:通过java代码验证测试

public class MyIkTest {

  public static String str = "中国人民银行我是中国人";

  public static void main(String[] args) {

     MyIkTest test = new MyIkTest();

     test.wordCount("", str);

   }

  private void wordCount(String arg,String content) {

     Analyzer analyzer = new IKAnalyzer(true); // IK实现分词  true:用最大词长分词  false:最细粒度切分

    StringReader reader = null;

    TokenStream ts = null;   try {

      reader = new StringReader(content);

      ts = analyzer.tokenStream(arg,reader);

      CharTermAttribute term = ts.addAttribute(CharTermAttribute.class);

      ts.reset();

      Map<String, Integer> map = new HashMap<String, Integer>(); //统计

      while (ts.incrementToken()) {

        String str = term.toString();

        Object o = map.get(str);

        if (o == null) {

          map.put(str, new Integer(1));

         } else {

          Integer i = new Integer(((Integer) o).intValue() + 1);

           map.put(str, i);

        }

       }

      List<Entry<String, Integer>> list = new ArrayList<Entry<String, Integer>>(map.entrySet());

      Collections.sort(list,new Comparator<Map.Entry<String, Integer>>() {

        public int compare(Map.Entry<String, Integer> o1,Map.Entry<String, Integer> o2) {

          return (o2.getValue() - o1.getValue());

        }    });

       for (int k=0;k<list.size();k++) {

        Entry<String, Integer> it=list.get(k);

        String word = it.getKey().toString();

        System.err.println(word+"["+it.getValue()+"]");

       }

    } catch (Exception e) {

     } finally {

      if(reader != null){

         reader.close();

      }

      if (analyzer != null) {

        analyzer.close();

      }

     }

   }

  }

执行程序测试结果如下:

中国人民银行[1]

中国人[1]

我[1]

3、配置说明

a、如何自定义配置扩展词典和停止词典    IKAnalyzer.cfg.xml中定义了扩展词典和停止词典,如果有多好个可以通过;配置多个。扩展词典是指用户可以根据自己定义的词义实现分词,比如人名在默认的词典中并未实现,需要自定义实现分词,卡可以通过在ext.dic中新增自定义的词语。停止词是指对于分词没有实际意义但出现频率很高的词,比如吗、乎等语气词,用户也可以通过在stopword.dic中自定义相关的停止词。

b、关于最大词长分词和最小粒度分词的区分    在IKAnalyzer构造方法中可以通过提供一个标示来实现最大词长分词和最小粒度分词,true为最大词长分词,默认是最小粒度分词。对"中国人民银行我是中国人"分别测试结果如下:

最大词长分词结果如下:

中国人民银行[1]

中国人[1]

我[1]

最小粒度分词结果如下:
国人[2]
中国人[2]
中国[2]
人民[1]
中国人民银行[1]
我[1]
人民银行[1]
中国人民[1]
银行[1]

IKAnalyzer结合Lucene实现中文分词的更多相关文章

  1. Lucene的中文分词器IKAnalyzer

    分词器对英文的支持是非常好的. 一般分词经过的流程: 1)切分关键词 2)去除停用词 3)把英文单词转为小写 但是老外写的分词器对中文分词一般都是单字分词,分词的效果不好. 国人林良益写的IK Ana ...

  2. Lucene的中文分词器

    1 什么是中文分词器 学过英文的都知道,英文是以单词为单位的,单词与单词之间以空格或者逗号句号隔开. 而中文的语义比较特殊,很难像英文那样,一个汉字一个汉字来划分. 所以需要一个能自动识别中文语义的分 ...

  3. (转)全文检索技术学习(三)——Lucene支持中文分词

    http://blog.csdn.net/yerenyuan_pku/article/details/72591778 分析器(Analyzer)的执行过程 如下图是语汇单元的生成过程:  从一个Re ...

  4. lucene之中文分词及其高亮显示(五)

    中文分词:即换个分词器 Analyzer analyzer = new StandardAnalyzer();// 标准分词器     换成  SmartChineseAnalyzer analyze ...

  5. Lucene整理--中文分词

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/hai_cheng001/article/details/37511379 看lucene主页(htt ...

  6. lucene之中文分词及其高亮显示

    参考:http://www.cnblogs.com/lirenzhujiu/p/5914174.html http://www.cnblogs.com/xing901022/p/3933675.htm ...

  7. Lucene系列四:Lucene提供的分词器、IKAnalyze中文分词器集成、扩展 IKAnalyzer的停用词和新词

    一.Lucene提供的分词器StandardAnalyzer和SmartChineseAnalyzer 1.新建一个测试Lucene提供的分词器的maven项目LuceneAnalyzer 2. 在p ...

  8. Apache Solr 初级教程(介绍、安装部署、Java接口、中文分词)

    Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...

  9. Lucene学习——IKAnalyzer中文分词

    一.环境 1.平台:MyEclipse8.5/JDK1.5 2.开源框架:Lucene3.6.1/IKAnalyzer2012 3.目的:测试IKAnalyzer的分词效果 二.开发调试 1.下载框架 ...

随机推荐

  1. PHP Socket编程(转)

    [PHPsocket编程专题(理论篇)]初步理解TCP/IP.Http.Socket.md [PHPsocket编程专题(实战篇①)]php-socket通信演示 [PHPsocket编程专题(实战篇 ...

  2. 关于ORACLE的各种操作~持续汇总~

    增.删.改: 增加所有 INSERT INTO 表名 VALUES(序列名.NEXTVAL,'值1','值2','值3','值4','值5'); 指定增加 INSERT INTO 表名(字段1,字段2 ...

  3. SQL Server 查找统计信息的采样时间与采样比例

    有时候我们会遇到,由于统计信息不准确导致优化器生成了一个错误的执行计划(或者这样表达:一个较差的执行计划),从而引起了系统性能问题.那么如果我们怀疑这个错误的执行计划是由于统计信息不准确引起的.那么我 ...

  4. 数字信号处理专题(3)——FFT运算初探

    一.前言 FFT运算是目前最常用的信号频谱分析算法.在本科学习数字信号处理这门课时一直在想:学这些东西有啥用?公式推来推去的,有实用价值么?到了研究生后期才知道,广义上的数字信号处理无处不在:手机等各 ...

  5. Windows Server 2016-Powershell之客户端加域

    将本地计算机添加到域或工作组,可通过Add-Computer命令操作,具体信息如下: 语法: Add-Computer [-DomainName] <String> [-ComputerN ...

  6. July 07th. 2018, Week 27th. Saturday

    Soon is not as good as now. 别谈未来,现在就行动. From Seth Godin. I always told myself that I should finish w ...

  7. kafka 幂等生产者及事务(kafka0.11之后版本新特性)

    1. 幂等性设计1.1 引入目的生产者重复生产消息.生产者进行retry会产生重试时,会重复产生消息.有了幂等性之后,在进行retry重试时,只会生成一个消息. 1.2 幂等性实现1.2.1 PID ...

  8. PHP中$GLOBALS和global的区别

    很多人都认为$GLOBALS['var']和global $var只是写法上不同,其实并不是这样 根据官方的解释是  $GLOBALS['var']是外部全局变量$var的本身, 而global $v ...

  9. Git让你从入门到精通,看这一篇就够了!

    简介 Git 是什么? Git 是一个开源的分布式版本控制系统. 什么是版本控制? 版本控制是一种记录一个或若干文件内容变化,以便将来查阅特定版本修订情况的系统. 什么是分布式版本控制系统? 介绍分布 ...

  10. spring mvc多个请求的影响 和使用全局变量

    对于那些会以多线程运行的单例类(比如spring mvc中的controller,dao,service): 局部变量不会受多线程影响 成员变量会受到多线程影响 如果方法里有成员变量,只有读操作,不受 ...