1、基本介绍

  随着分词在信息检索领域应用的越来越广泛,分词这门技术对大家并不陌生。对于英文分词处理相对简单,经过拆分单词、排斥停止词、提取词干的过程基本就能实现英文分词,单对于中文分词而言,由于语义的复杂导致分词并没英文分词那么简单,一般都是通过相关的分词工具来实现,目前比较常用的有庖丁分词以及IKAnalyzer等。这里我们主要通过一个简单的Demo聊聊IKAnalyzer的基本使用。IKAnalyzer是一个开源的,基于java开发的分词工具包,它独立于Lucene项目,同时提供了Lucene的默认实现。

2、IKAnalyzer结合Lucene实现简单的中文分词

  我们通过一个基本的Demo来实践说明,步骤如下:

step1:准备相关的Jar依赖,lucene-core-5.1.0.jar、ik.jar,然后新建项目,引入相关依赖项目结构如下:

IkDemo-src

     -con.funnyboy.ik

-IKAnalyzer.cfg.xml

     -stopword.dic

-ext.dic

-Reference Libraries

     -lucene-core-5.1.0.jar

     -ik.jar

IKAnalyzer.cfg.xml:配置扩展词典以及停止词典 内容如下:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">

<properties>   <comment>IK Analyzer 扩展配置</comment>

  <entry key="ext_dict">ext.dic;</entry>

  <entry key="ext_stopwords">stopword.dic;</entry>

</properties>

其中的ext.dic配置自己的扩展字典,stopword.dic配置自己的扩展停止词字典

step2:通过java代码验证测试

public class MyIkTest {

  public static String str = "中国人民银行我是中国人";

  public static void main(String[] args) {

     MyIkTest test = new MyIkTest();

     test.wordCount("", str);

   }

  private void wordCount(String arg,String content) {

     Analyzer analyzer = new IKAnalyzer(true); // IK实现分词  true:用最大词长分词  false:最细粒度切分

    StringReader reader = null;

    TokenStream ts = null;   try {

      reader = new StringReader(content);

      ts = analyzer.tokenStream(arg,reader);

      CharTermAttribute term = ts.addAttribute(CharTermAttribute.class);

      ts.reset();

      Map<String, Integer> map = new HashMap<String, Integer>(); //统计

      while (ts.incrementToken()) {

        String str = term.toString();

        Object o = map.get(str);

        if (o == null) {

          map.put(str, new Integer(1));

         } else {

          Integer i = new Integer(((Integer) o).intValue() + 1);

           map.put(str, i);

        }

       }

      List<Entry<String, Integer>> list = new ArrayList<Entry<String, Integer>>(map.entrySet());

      Collections.sort(list,new Comparator<Map.Entry<String, Integer>>() {

        public int compare(Map.Entry<String, Integer> o1,Map.Entry<String, Integer> o2) {

          return (o2.getValue() - o1.getValue());

        }    });

       for (int k=0;k<list.size();k++) {

        Entry<String, Integer> it=list.get(k);

        String word = it.getKey().toString();

        System.err.println(word+"["+it.getValue()+"]");

       }

    } catch (Exception e) {

     } finally {

      if(reader != null){

         reader.close();

      }

      if (analyzer != null) {

        analyzer.close();

      }

     }

   }

  }

执行程序测试结果如下:

中国人民银行[1]

中国人[1]

我[1]

3、配置说明

a、如何自定义配置扩展词典和停止词典    IKAnalyzer.cfg.xml中定义了扩展词典和停止词典,如果有多好个可以通过;配置多个。扩展词典是指用户可以根据自己定义的词义实现分词,比如人名在默认的词典中并未实现,需要自定义实现分词,卡可以通过在ext.dic中新增自定义的词语。停止词是指对于分词没有实际意义但出现频率很高的词,比如吗、乎等语气词,用户也可以通过在stopword.dic中自定义相关的停止词。

b、关于最大词长分词和最小粒度分词的区分    在IKAnalyzer构造方法中可以通过提供一个标示来实现最大词长分词和最小粒度分词,true为最大词长分词,默认是最小粒度分词。对"中国人民银行我是中国人"分别测试结果如下:

最大词长分词结果如下:

中国人民银行[1]

中国人[1]

我[1]

最小粒度分词结果如下:
国人[2]
中国人[2]
中国[2]
人民[1]
中国人民银行[1]
我[1]
人民银行[1]
中国人民[1]
银行[1]

IKAnalyzer结合Lucene实现中文分词的更多相关文章

  1. Lucene的中文分词器IKAnalyzer

    分词器对英文的支持是非常好的. 一般分词经过的流程: 1)切分关键词 2)去除停用词 3)把英文单词转为小写 但是老外写的分词器对中文分词一般都是单字分词,分词的效果不好. 国人林良益写的IK Ana ...

  2. Lucene的中文分词器

    1 什么是中文分词器 学过英文的都知道,英文是以单词为单位的,单词与单词之间以空格或者逗号句号隔开. 而中文的语义比较特殊,很难像英文那样,一个汉字一个汉字来划分. 所以需要一个能自动识别中文语义的分 ...

  3. (转)全文检索技术学习(三)——Lucene支持中文分词

    http://blog.csdn.net/yerenyuan_pku/article/details/72591778 分析器(Analyzer)的执行过程 如下图是语汇单元的生成过程:  从一个Re ...

  4. lucene之中文分词及其高亮显示(五)

    中文分词:即换个分词器 Analyzer analyzer = new StandardAnalyzer();// 标准分词器     换成  SmartChineseAnalyzer analyze ...

  5. Lucene整理--中文分词

    版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/hai_cheng001/article/details/37511379 看lucene主页(htt ...

  6. lucene之中文分词及其高亮显示

    参考:http://www.cnblogs.com/lirenzhujiu/p/5914174.html http://www.cnblogs.com/xing901022/p/3933675.htm ...

  7. Lucene系列四:Lucene提供的分词器、IKAnalyze中文分词器集成、扩展 IKAnalyzer的停用词和新词

    一.Lucene提供的分词器StandardAnalyzer和SmartChineseAnalyzer 1.新建一个测试Lucene提供的分词器的maven项目LuceneAnalyzer 2. 在p ...

  8. Apache Solr 初级教程(介绍、安装部署、Java接口、中文分词)

    Python爬虫视频教程零基础小白到scrapy爬虫高手-轻松入门 https://item.taobao.com/item.htm?spm=a1z38n.10677092.0.0.482434a6E ...

  9. Lucene学习——IKAnalyzer中文分词

    一.环境 1.平台:MyEclipse8.5/JDK1.5 2.开源框架:Lucene3.6.1/IKAnalyzer2012 3.目的:测试IKAnalyzer的分词效果 二.开发调试 1.下载框架 ...

随机推荐

  1. 通过XDocument方式把List写入Xml文件

    List<Person> list=new List<Person>{ new Person(){Name="张三",Age=50,Address=&quo ...

  2. SQL SERVER 查看近期死锁

    在项目运行的过程中,死锁不可能完全避免,但要尽可能减少死锁的出现, 产生死锁的原因主要是: 1,系统资源不足. 2,进程运行推进的顺序不合适. 3,资源分配不当等. 产生死锁的四个必要条件:- 互斥条 ...

  3. c/c++ open函数的阻塞和非阻塞

    调用open函数时,可以指定是以阻塞方式还是以非阻塞方式打开一个文件描述符. 阻塞方式打开: int fd = open("/dev/tty", O_RDWR|O_NONBLOCK ...

  4. 理解Device Tree Usage

    英语原文地址: htttp://devicetree.org/Device_Tree_Usage 本文介绍如何为新的机器或板卡编写设备树(Device Tree), 它旨在概要性的介绍设备树概念,以及 ...

  5. WinForm 工作流设计 1

    从事软件行业那么多年,一直很少写博.很多技术,长时间不用都慢慢淡忘. 把自己学到的用笔记下来,可以巩固和发现不足,也可以把自己对技术的一些 理解,分享出来供大家批评指正. 废话不多说,进入正题.工作流 ...

  6. Java中String做为synchronized同步锁使用详解

    Java中使用String作同步锁 在Java中String是一种特殊的类型存在,在jdk中String在创建后是共享常量池的,即使在jdk1.8之后实现有所不同,但是功能还是差不多的. 借助这个特点 ...

  7. Linux vi/vim编辑器常用命令与用法总结

    (一)vi/vim是什么?Linux世界几乎所有的配置文件都是以纯文本形式存在的,而在所有的Linux发行版系统上都有vi编辑器,因此利用简单的文字编辑软件就能够轻松地修改系统的各种配置了,非常方便. ...

  8. 【工具篇】Sublime Text 2 安装汉化破解、插件包安装教程详解

    Sublime Text概述: Sublime Text是一个代码编辑器,也是HTML和散文先进的文本编辑器. 漂亮的用户界面和非凡的功能,例如:迷你地图,多选择,Python插件,代码段等等. 完全 ...

  9. 解决@ResponseBody注解返回的json中文乱码问题

    1. 简介 主要解决@ResponseBody注解返回的json中文乱码问题. 2.解决方案 2.1mvc加上注解(推荐此方法) 在mvc配置文件中假如下面配置(写在 <mvc:annotati ...

  10. 分布式架构原理解析,Java开发必修课

    1. 分布式术语 1.1. 异常 服务器宕机 内存错误.服务器停电等都会导致服务器宕机,此时节点无法正常工作,称为不可用. 服务器宕机会导致节点失去所有内存信息,因此需要将内存信息保存到持久化介质上. ...