4517: [Sdoi2016]排列计数

题意:多组询问,n的全排列中恰好m个不是错排的有多少个


容斥原理强行推♂倒她

$恰好m个不是错排 $

\[ =\ \ge m个不是错排 - \ge m+1个不是错排\binom{m+1}{m} - \ge m+2个不是错排\binom{m+2}{m}... \\
= \sum_{i=m}^n \binom{n}{i} (n-i)!\binom{i}{m} \\
= \frac{n!}{m!} \sum_{i=m}^n (-1)^{i-m} \frac{1}{(i-m)!}
\]

预处理阶乘逆元前缀和就可以\(O(1)\)回答了

其实错排公式也是这么推倒来的



PS:发现题解全都是用的错排公式,~~等出一道你们不知道公式的题你们再用啊~~

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef long long ll;
#define fir first
#define sec second
const int N=1e6+5, P=1e9+7;
inline int read() {
char c=getchar(); int x=0, f=1;
while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
return x*f;
} int n, m;
ll inv[N], fac[N], facInv[N], s[N];
int main() {
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout);
inv[1]=1; fac[0]=facInv[0]=1;
s[0]=1;
for(int i=1; i<N; i++) {
if(i!=1) inv[i] = (P-P/i)*inv[P%i]%P;
fac[i] = fac[i-1]*i%P;
facInv[i] = facInv[i-1]*inv[i]%P;
s[i] = (s[i-1] + ((i&1) ? -facInv[i] : facInv[i]))%P;
}
int T=read();
while(T--) {
n=read(); m=read();
ll ans = fac[n]*facInv[m]%P * s[n-m]%P;
if(ans<0) ans+=P;
printf("%lld\n", ans);
}
}

BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]的更多相关文章

  1. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  2. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  3. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  4. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  5. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  6. bzoj 4517: [Sdoi2016]排列计数【容斥原理+组合数学】

    第一个一眼就A的容斥题! 这个显然是容斥的经典问题------错排,首先考虑没有固定的情况,设\( D_n \)为\( n \)个数字的错排方案数. \[ D_n=n!-\sum_{t=1}^{n}( ...

  7. BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)

    题目链接 错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数. 那么题目要求的就是\(C_n^m*D_{n-m}\). 阶乘分母部分的 ...

  8. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  9. BZOJ 4517: [Sdoi2016]排列计数 错排 + 组合

    从 $n$ 个数中选 $m$ 个不错排,那就是说 $n-m$ 个数是错排的. 用组合数乘一下就好了. Code: #include <cstdio> #include <algori ...

随机推荐

  1. 2017ecjtu-summer training #11 POJ 1018

    Communication System Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 29218   Accepted:  ...

  2. Android扫码二维码、美女瀑布流、知乎网易音乐、动画源码等

    Android精选源码 QRCode 扫描二维码.扫描条形码.相册获取图片后识别.生...   一个简洁好看的loading弹窗   Android用瀑布流展示美女图片源码   Android知乎阅读 ...

  3. 【Sql】mySQL在windows环境启动

    SQL的不同版本在Windows环境启动配置方法不同,此处仅介绍 5.7.20的配置方法: 1.登录mysql官网下载windows环境下的工具压缩包 http://dev.mysql.com/dow ...

  4. 深入设计电子计算器(一)——CPU框架及指令集设计

    版权申明:本文为博主窗户(Colin Cai)原创,欢迎转帖.如要转贴,必须注明原文网址 http://www.cnblogs.com/Colin-Cai/p/8278418.html 作者:窗户 Q ...

  5. MongoDB模拟多文档事务操作

    Mongodb不支持多文档原子性操作,因此依据两阶段提交协议(Two Phase Commits protocol)来模拟事务. 以两个银行账户之间的转账行为为例,来说明如何实现多文档间的事务操作. ...

  6. 我的第一个python web开发框架(20)——产品发布(部署到服务器)

    首先按上一章节所讲述的,将服务器环境安装好以后,接下来就是按步骤将网站部署到服务器上了. 我们的站点是前后端分离的,所以需要部署两个站点.首先来发布前端站点. 部署前端站点 输入命令进入svn管理文件 ...

  7. javascript alert乱码的解决方法

    http://www.jb51.net/article/42805.htm 提示时中文乱码,拼音什么的都没有问题呀,下面我在论坛找到一解决办法,下面与大家分享. 解决办法一: 复制代码 代码如下: e ...

  8. Java Reflection(getXXX和getDeclaredXXX)

    package com.sunchao.reflection; public class Person { private int age ; private String name; public ...

  9. 浅析RPC概念框架

    本文原封不动的来至于csdn MindWind,原文请见 RPC:RPC 的全称是 Remote Procedure Call 是一种进程间通信方式.它允许程序调用另一个地址空间(通常是共享网络的另一 ...

  10. oracle02

    SQL语句完整结构: select from where group by having order by 今天分享的知识点:(1)分组查询 select 中非组函数的列需要在group by 进行参 ...