You are climbing a stair case. It takes n steps to reach to the top.

Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?

Note: Given n will be a positive integer.

Example 1:

Input: 2
Output: 2
Explanation: There are two ways to climb to the top.
1. 1 step + 1 step
2. 2 steps

Example 2:

Input: 3
Output: 3
Explanation: There are three ways to climb to the top.
1. 1 step + 1 step + 1 step
2. 1 step + 2 steps
3. 2 steps + 1 step

这篇博客最开始名字叫做爬梯子问题,总是有童鞋向博主反映移动端打不开这篇博客,博主觉得非常奇怪,自己也试了一下,果然打不开。心想着是不是这个博客本身有问题,于是想再开一个相同的帖子,结果还是打不开,真是见了鬼了。于是博主换了个名字,结果居然打开了?!进经过排查后发现,原来是“爬梯子”这三个字是敏感词,放到标题里面,博客就被屏蔽了,我也真是醉了,完全是躺枪好么,无奈之下,只好改名为爬楼梯问题了 -。-|||。

这个爬梯子问题最开始看的时候没搞懂是让干啥的,后来看了别人的分析后,才知道实际上跟斐波那契数列非常相似,假设梯子有n层,那么如何爬到第n层呢,因为每次只能爬1或2步,那么爬到第n层的方法要么是从第 n-1 层一步上来的,要不就是从 n-2 层2步上来的,所以递推公式非常容易的就得出了:dp[n] = dp[n-1] + dp[n-2]。 由于斐波那契额数列的求解可以用递归,所以博主最先尝试了递归,拿到 OJ 上运行,显示 Time Limit Exceeded,就是说运行时间超了,因为递归计算了很多分支,效率很低,这里需要用动态规划 (Dynamic Programming) 来提高效率,代码如下:

C++ 解法一:

class Solution {
public:
int climbStairs(int n) {
if (n <= ) return ;
vector<int> dp(n);
dp[] = ; dp[] = ;
for (int i = ; i < n; ++i) {
dp[i] = dp[i - ] + dp[i - ];
}
return dp.back();
}
};

Java 解法一:

public class Solution {
public int climbStairs(int n) {
if (n <= 1) return 1;
int[] dp = new int[n];
dp[0] = 1; dp[1] = 2;
for (int i = 2; i < n; ++i) {
dp[i] = dp[i - 1] + dp[i - 2];
}
return dp[n - 1];
}
}

我们可以对空间进行进一步优化,只用两个整型变量a和b来存储过程值,首先将 a+b 的值赋给b,然后a赋值为原来的b,所以应该赋值为 b-a 即可。这样就模拟了上面累加的过程,而不用存储所有的值,参见代码如下:

C++ 解法二:

class Solution {
public:
int climbStairs(int n) {
int a = , b = ;
while (n--) {
b += a;
a = b - a;
}
return a;
}
};

Java 解法二:

public class Solution {
public int climbStairs(int n) {
int a = 1, b = 1;
while (n-- > 0) {
b += a;
a = b - a;
}
return a;
}
}
虽然前面说过递归的写法会超时,但是只要加上记忆数组,那就不一样了,因为记忆数组可以保存计算过的结果,这样就不会存在重复计算了,大大的提高了运行效率,其实递归加记忆数组跟迭代的 DP 形式基本是大同小异的,参见代码如下:

C++ 解法三:

class Solution {
public:
int climbStairs(int n) {
vector<int> memo(n + );
return helper(n, memo);
}
int helper(int n, vector<int>& memo) {
if (n <= ) return ;
if (memo[n] > ) return memo[n];
return memo[n] = helper(n - , memo) + helper(n - , memo);
}
};

Java 解法三:

public class Solution {
public int climbStairs(int n) {
int[] memo = new int[n + 1];
return helper(n, memo);
}
public int helper(int n, int[] memo) {
if (n <= 1) return 1;
if (memo[n] > 0) return memo[n];
return memo[n] = helper(n - 1, memo) + helper(n - 2, memo);
}
}
论坛上还有一种分治法 Divide and Conquer 的解法,用的是递归形式,可以通过,但是博主没有十分理解,希望各位看官大神可以跟博主讲一讲~

C++ 解法四:

class Solution {
public:
int climbStairs(int n) {
if(n <= ) return ;
return climbStairs(n / ) * climbStairs(n - n / ) + climbStairs(n / - ) * climbStairs(n - n / - );
}
};

Java 解法四:

public class Solution {
public int climbStairs(int n) {
if(n <= 1) return 1;
return climbStairs(n / 2) * climbStairs(n - n / 2) + climbStairs(n / 2 - 1) * climbStairs(n - n / 2 - 1);
}
}

最后来看一种叼炸天的方法,其实斐波那契数列是可以求出通项公式的,推理的过程请参见 知乎上的这个贴子,那么有了通项公式后,直接在常数级的时间复杂度范围内就可以求出结果了,参见代码如下:

C++ 解法五:

class Solution {
public:
int climbStairs(int n) {
double root5 = sqrt();
return ( / root5) * (pow(( + root5) / , n + ) - pow(( - root5) / , n + ));
}
};

Java 解法五:

public class Solution {
public int climbStairs(int n) {
double root5 = Math.sqrt(5);
double res = (1 / root5) * (Math.pow((1 + root5) / 2, n + 1) - Math.pow((1 - root5) / 2, n + 1));
return (int)res;
}
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/70

类似题目:

Min Cost Climbing Stairs

Fibonacci Number

参考资料:

https://leetcode.com/problems/climbing-stairs/

https://leetcode.com/problems/climbing-stairs/discuss/25345/Easy-solutions-for-suggestions.

https://leetcode.com/problems/climbing-stairs/discuss/25296/3-4-short-lines-in-every-language

https://leetcode.com/problems/climbing-stairs/discuss/25608/My-divide-and-conquer-way-to-solve-this-problem(Java)

https://leetcode.com/problems/climbing-stairs/discuss/25436/Using-the-Fibonacci-formular-to-get-the-answer-directly

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Climbing Stairs 爬梯子问题的更多相关文章

  1. [LintCode] Climbing Stairs 爬梯子问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  2. [Leetcode] climbing stairs 爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  3. [LeetCode] 70. Climbing Stairs 爬楼梯问题

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  4. [LeetCode] Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  5. [LeetCode] 746. Min Cost Climbing Stairs 爬楼梯的最小损失

    On a staircase, the i-th step has some non-negative cost cost[i] assigned (0 indexed). Once you pay ...

  6. [LeetCode] 70. Climbing Stairs 爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

  7. Leetcode: climbing stairs

    July 28, 2015 Problem statement: You are climbing a stair case. It takes n steps to reach to the top ...

  8. [LeetCode] Climbing Stairs (Sequence DP)

    Climbing Stairs https://oj.leetcode.com/problems/climbing-stairs/ You are climbing a stair case. It ...

  9. [leetcode]70. Climbing Stairs爬楼梯

    You are climbing a stair case. It takes n steps to reach to the top. Each time you can either climb ...

随机推荐

  1. c#编程基础之ref、out参数

    引例: 先看这个源码,函数传递后由于传递的是副本所以真正的值并没有改变. 源码如下: using System; using System.Collections.Generic; using Sys ...

  2. FFmpeg学习3:播放音频

    参考dranger tutorial,本文将介绍如何使用FFmpeg解码音频数据,并使用SDL将解码后的数据输出. 本文主要包含以下几方面的内容: 关于播放音频的需要的一些基础知识介绍 使用SDL2播 ...

  3. C++异常处理:try,catch,throw,finally的用法

    写在前面 所谓异常处理,即让一个程序运行时遇到自己无法处理的错误时抛出一个异常,希望调用者可以发现处理问题. 异常处理的基本思想是简化程序的错误代码,为程序键壮性提供一个标准检测机制. 也许我们已经使 ...

  4. C#定时执行

    代码: using System; using System.Collections.Generic; using System.ComponentModel; using System.Data; ...

  5. [C1] C1FlexGrid 行列增删&单元格合并拆分

    上一篇中实现了 C1FlexGrid的撤销还原功能,这篇是要仿 Excel 做一个行列删除以及单元格的自由合并拆分,楼主怕在原工程里复杂的说不清道不明,所以干脆提取出来做了一个 Demo 来说明实现过 ...

  6. C#开发微信门户及应用(3)--文本消息和图文消息的应答

    微信应用如火如荼,很多公司都希望搭上信息快车,这个是一个商机,也是一个技术的方向,因此,有空研究下.学习下微信的相关开发,也就成为计划的安排事情之一了.本系列文章希望从一个循序渐进的角度上,全面介绍微 ...

  7. poj1698--最大流(Dinic)

    题目大意: 爱丽丝要拍电影,有n部电影,规定爱丽丝每天只能拍一部电影,每部电影在每个礼拜只有固定的几天可以拍电影,只可以拍前面w个礼拜,并且这部电影要拍d天,问爱丽丝能不能拍完所有的电影. 思路: 建 ...

  8. java基础知识 多线程

    package org.base.practise9; import org.junit.Test; import java.awt.event.WindowAdapter; import java. ...

  9. 深刻理解:C#中的委托、事件

    C#中的事件还真是有点绕啊,以前用JavaScript的我,理解起来还真是废了好大劲!刚开始还真有点想不明白为什么这么绕,想想和JS的区别,最后终于恍然大悟! C#中事件绕的根本原因: C#的方法,它 ...

  10. 从Java String实例来理解ANSI、Unicode、BMP、UTF等编码概念

    转(http://www.codeceo.com/article/java-string-ansi-unicode-bmp-utf.html#0-tsina-1-10971-397232819ff9a ...