k-mean
import numpy as np
from k_initialize_cluster import k_init
np.random.seed()
class YOLO_Kmeans:
def __init__(self, cluster_number, filename):
self.cluster_number = cluster_number
self.filename = "train.txt"
def iou(self, boxes, clusters): # 1 box -> k clusters
n = boxes.shape[0]
k = self.cluster_number
box_area = boxes[:, 0] * boxes[:, 1]
box_area = box_area.repeat(k)
box_area = np.reshape(box_area, (n, k))
cluster_area = clusters[:, 0] * clusters[:, 1]
cluster_area = np.tile(cluster_area, [1, n])
cluster_area = np.reshape(cluster_area, (n, k))
box_w_matrix = np.reshape(boxes[:, 0].repeat(k), (n, k))
cluster_w_matrix = np.reshape(np.tile(clusters[:, 0], (1, n)), (n, k))
min_w_matrix = np.minimum(cluster_w_matrix, box_w_matrix)
box_h_matrix = np.reshape(boxes[:, 1].repeat(k), (n, k))
cluster_h_matrix = np.reshape(np.tile(clusters[:, 1], (1, n)), (n, k))
min_h_matrix = np.minimum(cluster_h_matrix, box_h_matrix)
inter_area = np.multiply(min_w_matrix, min_h_matrix)
result = inter_area / (box_area + cluster_area - inter_area)
return result
def avg_iou(self, boxes, clusters):
accuracy = np.mean([np.max(self.iou(boxes, clusters), axis=1)])
return accuracy
def kmeans(self, boxes, k, dist=np.median):
box_number = boxes.shape[0]
distances = np.empty((box_number, k))#18 * 9
last_nearest = np.zeros((box_number,))#18
# np.random.seed()
#初始化kmeans均值
# clusters = k_init(boxes,k)
# print("cluster:",clusters)
# clusters = np.array(clusters)
clusters = boxes[np.random.choice(
box_number, k, replace=False)] # init k clusters
while True:
distances = 1 - self.iou(boxes, clusters)#18*9
current_nearest = np.argmin(distances, axis=1)
if (last_nearest == current_nearest).all():
break # clusters won't change
for cluster in range(k):
clusters[cluster] = dist( # update clusters
boxes[current_nearest == cluster], axis=0)
last_nearest = current_nearest
return clusters
def result2txt(self, data):
f = open("yolo_anchors.txt", 'w')
row = np.shape(data)[0]
for i in range(row):
if i == 0:
x_y = "%d,%d" % (data[i][0], data[i][1])
else:
x_y = ", %d,%d" % (data[i][0], data[i][1])
f.write(x_y)
f.close()
def txt2boxes(self):
f = open(self.filename, 'r')
dataSet = []
for line in f:
infos = line.split(" ")
length = len(infos)
for i in range(1, length):
width = int(infos[i].split(",")[2]) - \
int(infos[i].split(",")[0])
height = int(infos[i].split(",")[3]) - \
int(infos[i].split(",")[1])
dataSet.append([width, height])
print("i",i)
result = np.array(dataSet)
f.close()
return result
def txt2clusters(self):
all_boxes = self.txt2boxes()
result = self.kmeans(all_boxes, k=self.cluster_number)
result = result[np.lexsort(result.T[0, None])]
self.result2txt(result)
print("K anchors:\n {}".format(result))
print("Accuracy: {:.2f}%".format(
self.avg_iou(all_boxes, result) * 100))
if name == "main":
cluster_number = 9
filename = "train.txt"
kmeans = YOLO_Kmeans(cluster_number, filename)
print("kmeans:",kmeans)
kmeans.txt2clusters()
print("stop:")
k-mean的更多相关文章
- django模型操作
Django-Model操作数据库(增删改查.连表结构) 一.数据库操作 1.创建model表
- 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)
其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...
- 【开源】专业K线绘制[K线主副图、趋势图、成交量、滚动、放大缩小、MACD、KDJ等)
这是一个iOS项目雅黑深邃的K线的绘制. 实现功能包括K线主副图.趋势图.成交量.滚动.放大缩小.MACD.KDJ,长按显示辅助线等功能 预览图 最后的最后,这是项目的开源地址:https://git ...
- 找到第k个最小元----快速选择
此算法借用快速排序算法. 这个快速选择算法主要利用递归调用,数组存储方式.包含3个文件,头文件QuickSelect.h,库函数QuickSelect.c,测试文件TestQuickSelect. 其 ...
- BZOJ 3110: [Zjoi2013]K大数查询 [树套树]
3110: [Zjoi2013]K大数查询 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 6050 Solved: 2007[Submit][Sta ...
- 二次剩余、三次剩余、k次剩余
今天研究了一下这块内容...首先是板子 #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- [LeetCode] Longest Substring with At Least K Repeating Characters 至少有K个重复字符的最长子字符串
Find the length of the longest substring T of a given string (consists of lowercase letters only) su ...
- K近邻法(KNN)原理小结
K近邻法(k-nearst neighbors,KNN)是一种很基本的机器学习方法了,在我们平常的生活中也会不自主的应用.比如,我们判断一个人的人品,只需要观察他来往最密切的几个人的人品好坏就可以得出 ...
- YYStock开源----iOS股票K线绘制第二版
新的股票绘制粗来啦,欢迎围观star的说(*^__^*) 嘻嘻-- 捏合功能也准备完善了 Github:https://github.com/yate1996/YYStock 长按分时图+五档图 分时 ...
- k近邻算法(knn)的c语言实现
最近在看knn算法,顺便敲敲代码. knn属于数据挖掘的分类算法.基本思想是在距离空间里,如果一个样本的最接近的k个邻居里,绝大多数属于某个类别,则该样本也属于这个类别.俗话叫,"随大流&q ...
随机推荐
- 【C语言学习笔记】指针
用来存放一个变量地址的变量就叫指针变量.指针变量也是有类型约束的,一般什么类型的指针指向什么类型的变量. 指针之所以叫变量,是因为它里面所存放的变量的地址也是不断变化的,指针是可以移动的. 定义格式: ...
- SpringBoot 基础(二)
目录 SpringBoot基础(二) 一.操作数据库 1. SpringBootJdbc 2. SpringBoot 整合 Mybatis 3. SpringBott 使用JPA 二.使用 Thyme ...
- 分享一个Linux C++消息通信框架TCPSHM
由于本人从事行业关系,Linux环境下的低延迟通信是我关注的技术之一.要达到极端的低延迟,当然同机器内IPC比网络通信快,而Linux IPC方式中无疑是共享内存延迟最低.不过相对于TCP这种通用的通 ...
- Oracle查询所有字段另加两个拼接字段的操作
Oracle查询所有字段,再加两个字段拼接, select a.*,(SNO||SNAME) from TEST_STUDENT a; 同理,查询所有字段,其中两个字段求和:(SNO和SAGE都是NU ...
- 示例:WPF中自定义StoryBoarService在代码中封装StoryBoard、Animation用于简化动画编写
原文:示例:WPF中自定义StoryBoarService在代码中封装StoryBoard.Animation用于简化动画编写 一.目的:通过对StoryBoard和Animation的封装来简化动画 ...
- 递归求兔子数列第n项的值
#include <iostream> using namespace std; int f(int n)//递归f数列的第n项 { ,y=,z; ||n==) { ; } else { ...
- 推荐算法之Thompson(汤普森)采样
如果想理解汤普森采样算法,就必须先熟悉了解贝塔分布. 一.Beta(贝塔)分布 Beta分布是一个定义在[0,1]区间上的连续概率分布族,它有两个正值参数,称为形状参数,一般用α和β表示,Beta分布 ...
- SQL Server 2017 下载及安装详细教程
SQL Servicer 2017 下载及安装 1)下载安装SQLServer 2)安装SQLServer management Studio. 一. 下载及安装SQLServer 下载链接( ...
- Spring Cloud的常规组件和简单实战(一)
最近一段时间在学习Spring Cloud,从Eureka到Hystrix,常用的配置和方法都有涉及一些,以此笔记来记录一下学习到的东西,也分享一下.内容以实战为起点,主要以介绍常规用法为主,最后也会 ...
- SpringCloud高并发性能优化
1. SpringCloud高并发性能优化 1.1. 前言 当系统的用户量上来,每秒QPS上千后,可能就会导致系统的各种卡顿,超时等情况,这时优化操作不可避免 1.2. 优化步骤 第一步:优化大SQL ...