Codeforces C.Neko does Maths
题目描述:
1 second
256 megabytes
standard input
standard output
Neko loves divisors. During the latest number theory lesson, he got an interesting exercise from his math teacher.
Neko has two integers aa and bb. His goal is to find a non-negative integer kk such that the least common multiple of a+ka+k and b+kb+k is the smallest possible. If there are multiple optimal integers kk, he needs to choose the smallest one.
Given his mathematical talent, Neko had no trouble getting Wrong Answer on this problem. Can you help him solve it?
The only line contains two integers aa and bb (1≤a,b≤1091≤a,b≤109).
Print the smallest non-negative integer kk (k≥0k≥0) such that the lowest common multiple of a+ka+k and b+kb+k is the smallest possible.
If there are many possible integers kk giving the same value of the least common multiple, print the smallest one.
6 10
2
21 31
9
5 10
0
In the first test, one should choose k=2k=2, as the least common multiple of 6+26+2 and 10+210+2 is 2424, which is the smallest least common multiple possible.
思路:
刚开始拿到题:首先看了看1秒限时,时间快完了,我就抱着试一试的心态,用欧几里得求最大公约数的方法,把k从0一直循环到1000000(大概一秒钟)来求最大值,他时间要是够长我就一直算下去 ,看能够算到那一个测试点。
结束后:试着推一推。
设a=x1*g,b=x2*g;(g为a和b的最大公因数,x1,x2为系数)。a'=x1*g+k,b'=x2*g+k,则a'-b'=a-b=g(x1-x2);
因为a-b是个定值,现在题目要求的是将a和b一起加上某个数值后的公倍数最小。又因为gcd(a',b')=gcd(a'-b',a')=gcd(a-b,b')(证明提示见上方的式子)。
也就是说,现在我们要求的是(a'*b')/gcd(a',b')=(a'*b')/gcd(b-a,b');要这个式子最小,怎么办?
已知的是b-a的值,目标式的分母是b-a和b'的最大公因数,那么也是b-a的因数,因为b-a的因数有限,可以枚举出,那么对于每一个因数i,就设它是gcd(b-a,b'),就可以找到相应的b',即让i成为b-a和b'的最大公因数。可以求出k值,也就是b加上k能够使i成为其因数,有了k值就有了目标式的所有值,求出答案。小心数据范围和求因数时选择根号将时间减半以避免超时,还有就是一种特殊情况需要单独讨论,a-b=0时,上面的过程中会出现被0除的错误。
知识点:gcd
代码:
#include <iostream>
#include <cmath>
using namespace std;
long long a;
long long b;
long long ab;
long long k;
long long gcd(long long a,long long b)
{
long long r = a%b;
if(r==) return b;
return gcd(b,r);
}
int main()
{
cin >> a >> b;
if(a<b) swap(a,b);
ab = a-b;
//cout << "ab " << ab << endl;
long long m = a*b/gcd(a,b);
long long p = ;
if(ab!=)
{
for(int i = ; i<=sqrt(ab)+; i++)
{
if(ab%i==)
{
//cout << i << endl;
k = i-a%i;
//cout << "k " << k << endl;
long long nm = (a+k)*(b+k)/gcd(a+k,b+k);
if(nm<m)
{
m = nm;
p = k; }
k = ab/i-a%(ab/i);
//cout << "k" << endl;
nm = (a+k)*(b+k)/gcd(a+k,b+k);
if(nm<m)
{
m = nm;
p = k; }
}
}
}
cout << p << endl;
return ;
}
Codeforces C.Neko does Maths的更多相关文章
- codeforces#1152C. Neko does Maths(最小公倍数)
题目链接: http://codeforces.com/contest/1152/problem/C 题意: 给出两个数$a$和$b$ 找一个$k(k\geq 0)$得到最小的$LCM(a+k,b+k ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (简单推导)
题目:http://codeforces.com/contest/1152/problem/C 题意:给你a,b, 你可以找任意一个k 算出a+k,b+k的最小公倍数,让最小公倍数尽量小,求出 ...
- Neko does Maths CodeForces - 1152C 数论欧几里得
Neko does MathsCodeForces - 1152C 题目大意:给两个正整数a,b,找到一个非负整数k使得,a+k和b+k的最小公倍数最小,如果有多个k使得最小公倍数最小的话,输出最小的 ...
- Codeforces Round #554 (Div. 2) C.Neko does Maths (gcd的运用)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给定两个正整数a,b,其中(1<=a,b<=1e9),求一个正整数k(0&l ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths(数学+GCD)
传送门 题意: 给出两个整数a,b: 求解使得LCM(a+k,b+k)最小的k,如果有多个k使得LCM()最小,输出最小的k: 思路: 刚开始推了好半天公式,一顿xjb乱操作: 后来,看了一下题解,看 ...
- Codeforces Round #554 (Div. 2) C. Neko does Maths (数论 GCD(a,b) = GCD(a,b-a))
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ ...
- L - Neko does Maths CodeForces - 1152C 数论(gcd)
题目大意:输入两个数 a,b,输出一个k使得lcm(a+k,b+k)尽可能的小,如果有多个K,输出最小的. 题解: 假设gcd(a+k,b+k)=z; 那么(a+k)%z=(b+k)%z=0. a%z ...
- codeforces#1152D. Neko and Aki's Prank(dp)
题目链接: https://codeforces.com/contest/1152/problem/D 题意: 给出一个$n$,然后在匹配树上染色边,每个结点的所有相邻边只能被染色一次. 问,这颗树上 ...
- C. Neko does Maths(数论 二进制枚举因数)
题目链接:https://codeforces.com/contest/1152/problem/C 题目大意:给你a和b,然后让你找到一个k,使得a+k和b+k的lcm. 学习网址:https:/ ...
随机推荐
- 查看表空间使用情况(SQL)
1: --查询表空间使用情况 2: SELECT Upper(F.TABLESPACE_NAME) "表空间名", 3: D.TOT_GROOTTE_ ...
- IIS配置实现反向代理(图文)
需求: 网站在备案,本来的网站不符合要求,先反向到别的网站.原网站:test.com, 目标网站:target.com 设置反向代理的服务器一定是在原网站服务器上. 注意:iis应该是iis7及以上版 ...
- Oracle 实现表中id字段自增长
Oracle 实现表中id字段自增长 最近正在学习Oracle的时候发现Oracle表中的字段不能像mysql中那样可以用auto increment修饰字段从而让id这种主键字段实现自增长. 那Or ...
- vs2015 debug时出现 C2039“cout”: 不是“std”的成员
今天想起电脑上的vs2015,发现好久没用了,用了下,遇到了一个问题 由于不常用c++,还是觉得应该记录下来,以免下次遇到,不知怎么处理 新建项目Hello Hello.cpp #include &q ...
- 【idea】设置背景颜色
File->Settings->Editor->Color Scheme->General->Text->Default text->Background
- ai切片的完美解决方案
ai切片的完美解决方案1 背景拖到外面2 导出psd3 ps切片 背景夹层黑色就看清楚啦
- linux设置root密码&进入不了root
刚装的linux无法使用root需要初始化密码 1.设置密码 sudo passwd root 点击回车,然后输入两次你想设置的密码,比如123456 2.切换用户 su root 再输入你刚才设置的 ...
- [转帖]关于4A(统一安全管理平台)系统的理解
雪山上的蒲公英 https://www.cnblogs.com/zjfjava/p/10674577.html 关于4A(统一安全管理平台)系统的理解 1. 4A系统的需求分析 近年来企业用户的业 ...
- MySQL高级 之 order by、group by 优化
参考: https://blog.csdn.net/wuseyukui/article/details/72627667 order by示例 示例数据: Case 1 Case 2 Case 3 ...
- 【转】Isim——基本技巧
来源:电子产品世界: 注:本文由NingHeChuan本人多出整理所得,原文章图片不清晰,自己整理配图后重新发表 安装好ISE,系统已经自带了ISim仿真软件,相比于专业的仿真软件Modelsim,I ...