问题描述:

有n种重量和价值分别为Wi,Vi的物品,从这些中挑选出总重量不超过W的物品,求出挑选物品的价值总和的最大值,每种物品可以挑选任意多件。

分析:

令dp[i+1][j]表示从前i件物品中挑选总重量不超过j时总价值的最大值。则递推关系为:

dp[0][j]=0;

dp[i+1][j]=max(dp[i+1][j],dp[i+1][j-kw[i]]+kv[i]);

核心代码可以表示为:

int dp[100][100];
void solve()
{
for(int i=0;i<n;i++)
for(int j=0;j<W;j++)
for(int k=0;k*w[i]<=j;k++)
dp[i+1][j]=max(dp[i+1][j],dp[i][j-k*w[i]]+k*v[i]);
}

这是一个三重的for循环,我们可以通过变形将上面的一重k循环去掉,那么上面的程序就变为:

int dp[100][100];
void solve()
{
for(int i=0; i<n; i++)
for(int j=0; j<W; j++)
{
if(j<w[i])
dp[i+1][j]=dp[i][j];
else
dp[i+1][j]=max(dp[i][j],dp[i+1][j-w[i]]+v[i]);
}
}

此外,01背包和完全背包问题都可以转化为一维的问题来实现,

01背包的情况:

int dp[100];
void solve()
{
for(int i=0; i<n; i++)
for(int j=W; j>=w[i]; j--)
{
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
}

完全背包的情况:

int dp[100];
void solve()
{
for(int i=0; i<n; i++)
for(int j=w[i];j<=W;j++)
{
dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
}
}

完全背包问题入门 (dp)的更多相关文章

  1. HDU 1231 最大连续子序列 --- 入门DP

    HDU 1231 题目大意以及解题思路见: HDU 1003题解,此题和HDU 1003只是记录的信息不同,处理完全相同. /* HDU 1231 最大连续子序列 --- 入门DP */ #inclu ...

  2. HDU 2571 命运 (入门dp)

    题目链接 题意:二维矩阵,左上角为起点,右下角为终点,如果当前格子是(x,y),下一步可以是(x+1,y),(x,y+1)或者(x,y*k) ,其中k>1.问最大路径和. 题解:入门dp,注意负 ...

  3. 【笔记】入门DP

    复习一下近期练习的入门 \(DP\) .巨佬勿喷.\(qwq\) 重新写一遍练手,加深理解. 代码已经处理,虽然很明显,但请勿未理解就贺 \(qwq\) 0X00 P1057 [NOIP2008 普及 ...

  4. BZOJ 3163: [Heoi2013]Eden的新背包问题( 背包dp )

    从左到右, 从右到左分别dp一次, 然后就可以回答询问了. ---------------------------------------------------------- #include< ...

  5. offer(背包问题、DP)

    蒜头君很早就想出国,现在他已经考完了所有需要的考试,准备了所有要准备的材料,于是,便需要去申请学校了.要申请国外的任何大学,你都要交纳一定的申请费用,这可是很惊人的.蒜头君没有多少钱,总共只攒了n万元 ...

  6. UVA 674 (入门DP, 14.07.09)

     Coin Change  Suppose there are 5 types of coins: 50-cent, 25-cent, 10-cent, 5-cent, and 1-cent. We ...

  7. 跟着大佬重新入门DP

    数列两段的最大字段和 POJ2479 Maximum sum Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 41231 Acce ...

  8. Born Slippy (超大背包问题 + 树形DP)

    首先是需要我们知道的是假设又一条链给你让你求最大值,你会求吗?当然会,就是时间有点爆炸O(n2).那不行,要是如果我把到达每个点的最大值以及他对后面的贡献情况都求出来后放在数组里面,然后到了新的节点直 ...

  9. 入门dp总结

    写这篇博文主要是为了归纳总结一下dp的有关问题(不定期更新,暑假应该会更的快一些) 会大概讲一下思路,不会事无巨细地讲 另一篇是平时做过的一些dp题,这篇博客里面提到的题都有题解放在那边:https: ...

随机推荐

  1. Zigbee安全基础篇Part.1

    原文地址: https://www.4hou.com/wireless/14211.html 导语:ZigBee是一种开源无线技术,用于低功耗嵌入式设备(无线电系统).本文探讨了ZigBee协议的可用 ...

  2. ZOJ 1403 F-Safecracker

    https://vjudge.net/contest/67836#problem/F "The item is locked in a Klein safe behind a paintin ...

  3. G# GUID

    GUID(全局统一标识符)是指在一台机器上生成的数字,它保证对在同一时空中的所有机器都是唯一的.通常平台会提供生成GUID的API.生成算法很有意思,用到了以太网卡地址.纳秒级时间.芯片ID码和许多可 ...

  4. 第一次通过CLR Profile解决内存占用过高的问题

    炮哥:"嘿,哥们,忙啥呢,电脑卡成这逼样." 勇哥:"在用CLR Profile工具分析下FlexiPrint的内存占用情况." 炮哥:“哎哟,不错啊,玩高级的 ...

  5. 【题解】洛谷P3709大爷的字符串题

    最近想要练习一下莫队(实在是掌握的太不熟练了啊.)这题一开始看到有点懵(题面杀),后来发现是要求众数的个数.乍一看好像很难的样子. 但仔细分析一下:首先往序列当中加入一个数,这个是很简单的,只需要维护 ...

  6. [洛谷P4345][SHOI2015]超能粒子炮·改

    题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...

  7. 【BZOJ5296】【CQOI2018】破解D-H协议(BSGS)

    [BZOJ5296][CQOI2018]破解D-H协议(BSGS) 题面 BZOJ 洛谷 Description Diffie-Hellman密钥交换协议是一种简单有效的密钥交换方法.它可以让通讯双方 ...

  8. HDU3157:Crazy Circuits——题解

    http://acm.hdu.edu.cn/showproblem.php?pid=3157 题目大意:给一个电路 ,起点为+,终点为-,包括起点终点在内的电元件之间有有下界边,求最小流. ————— ...

  9. 项目管理---git----快速使用git笔记(六)------本地开发与远程仓库的交互----常用git命令

    无论是我们自己把本地的项目新建了一个远程仓库 还是 从远程仓库获取到了 本地,现在我们都在本地有了一份项目代码,服务器上对应有项目代码的信息. 现在我们就开始进行交互操作了. 也就是说明一些在 正常开 ...

  10. React Patterns

    Contents Stateless function JSX spread attributes Destructuring arguments Conditional rendering Chil ...