当C不是素数的时候,之前介绍的BSGS就行不通了,需要用到拓展BSGS算法

方法转自https://blog.csdn.net/zzkksunboy/article/details/73162229

典型例题是POJ3243

 #include<cstdio>
#include<cmath>
#include<algorithm>
using namespace std;
struct Hashmap
{
static const int Ha=,maxe=;
int E,lnk[Ha],son[maxe+],nxt[maxe+],w[maxe+];
int top,stk[maxe+];
void clear() {E=;while (top) lnk[stk[top--]]=;}
void Add(int x,int y) {son[++E]=y;nxt[E]=lnk[x];w[E]=0X7fffffff;lnk[x]=E;}
bool count(int y)
{
int x=y%Ha;
for (int j=lnk[x];j;j=nxt[j])
if (y==son[j]) return true;
return false;
}
int& operator [] (int y)
{
int x=y%Ha;
for (int j=lnk[x];j;j=nxt[j])
if (y==son[j]) return w[j];
Add(x,y);stk[++top]=x;return w[E];
}
}f;
int gcd(int a,int b)
{
return b==?a:gcd(b,a%b);
}
int exgcd(int a,int b,int &x,int &y)
{
if(b==) {x=;y=;return a;}
int r=exgcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
return r;
}
int exBSGS(int A,int B,int C)
{
if(C==) if(B==) return A!=; else return -;
if(B==) if(A!=) return ; else return -;
if(A%C==) if(B==) return ; else return -;
int r,D=,num=;
while((r=gcd(A,C))>)
{
if(B%r) return -;
num++;
B/=r;C/=r;D=((long long)D*A/r)%C;
}
for(int i=,tmp=;i<num;i++,tmp=((long long)tmp*A)%C)
if(tmp==B) return i;
int m=ceil(sqrt(C)),Base=;f.clear();
for(int i=;i<=m-;i++)
{
f[Base]=min(f[Base],i);
Base=((long long)Base*A)%C;
}
for(int i=;i<=m-;i++)
{
int x,y,r=exgcd(D,C,x,y);
x=((long long)x*B%C+C)%C;
if(f.count(x)) return i*m+f[x]+num;
D=((long long)D*Base)%C;
}
return -;
}
int main()
{
int A,B,C;
while(scanf("%d%d%d",&A,&C,&B)==)
{
if(!A&&!B&&!C) break;
int ans=exBSGS(A,B,C);
if(ans==-) printf("No Solution\n");
else printf("%d\n",ans);
}
return ;
}

给哈希好评,哪天好好整理一下

数学:拓展BSGS的更多相关文章

  1. 【POJ 3243】Clever Y 拓展BSGS

    调了一周,我真制杖,,, 各种初始化没有设为1,,,我当时到底在想什么??? 拓展BSGS,这是zky学长讲课的课件截屏: 是不是简单易懂.PS:聪哥说“拓展BSGS是偏题,省选不会考,信我没错”,那 ...

  2. 数论之高次同余方程(Baby Step Giant Step + 拓展BSGS)

    什么叫高次同余方程?说白了就是解决这样一个问题: A^x=B(mod C),求最小的x值. baby step giant step算法 题目条件:C是素数(事实上,A与C互质就可以.为什么?在BSG ...

  3. [拓展Bsgs] Clever - Y

    题目链接 Clever - Y 题意 有同余方程 \(X^Y \equiv K\ (mod\ Z)\),给定\(X\),\(Z\),\(K\),求\(Y\). 解法 如题,是拓展 \(Bsgs\) 板 ...

  4. 【SPOJ】Power Modulo Inverted(拓展BSGS)

    [SPOJ]Power Modulo Inverted(拓展BSGS) 题面 洛谷 求最小的\(y\) 满足 \[k\equiv x^y(mod\ z)\] 题解 拓展\(BSGS\)模板题 #inc ...

  5. 数学:BSGS

    先来稍微回顾一下,我们已经会求模线性方程(包括其特殊情况乘法逆元) 我们还会进行幂取模的快速算法(模是质数用费马小定理,模一般情况用欧拉定理) 对于幂中指数特别大的情况,我们还延伸出了拓展欧拉定理来解 ...

  6. bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

    这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+ ...

  7. 【POJ3243】拓展BSGS(附hash版)

    上一篇博文中说道了baby step giant step的方法(简称BSGS),不过对于XY mod Z = K ,若x和z并不互质,则不能直接套用BSGS的方法了. 为什么?因为这时候不存在逆元了 ...

  8. 【POJ3243】【拓展BSGS】Clever Y

    Description Little Y finds there is a very interesting formula in mathematics: XY mod Z = K Given X, ...

  9. 【HDU2815】【拓展BSGS】Mod Tree

    Problem Description   The picture indicates a tree, every node has 2 children.  The depth of the nod ...

随机推荐

  1. 物联网常见通信协议RFID、NFC、Bluetooth、ZigBee等梳理

    1  概述 在上一篇文章<物联网常见通信协议与通讯协议梳理[上]-通讯协议>中,对物联网常用通信协议和通讯协议作了区分,并对通讯协议进行了分享:本文将对常用的通信协议进行剖析,重点面向市场 ...

  2. 第一课——从main到WinMain

    一.Visual C++6.0 由微软公司推出的基于Windows系统的可视化集成开发环境(IDE) 微软公司为其开发了功能强大的MFC(Microsoft Foundation Class,微软基础 ...

  3. C语言文件基本操作

    1.用文本方式储存‘1’,‘0’,‘2’存入文件,然后用二进制方式从文件开头读出一个short型数据,并验证结果是否正确 #include<stdio.h> #include<str ...

  4. Android中的回调Callback

    回调就是外部设置一个方法给一个对象, 这个对象可以执行外部设置的方法, 通常这个方法是定义在接口中的抽象方法, 外部设置的时候直接设置这个接口对象即可. 例如给安卓添加按钮点击事件, 我们创建了OnC ...

  5. 算法与数据结构实验题 6.3 search

    ★实验任务 可怜的 Bibi 刚刚回到家,就发现自己的手机丢了,现在他决定回头去搜索 自己的手机. 现在我们假设 Bibi 的家位于一棵二叉树的根部.在 Bibi 的心中,每个节点 都有一个权值 x, ...

  6. iOS- 如何从Boujour里解析出IP地址(sockaddr *的解析)?

    1.前言 之前有网友跟我留言说到: 如何从Boujour 解析完的数组里解析出ip地址? 因为Boujour本身解析完毕之后的addresses是一个数组 那我们如何从这个数组里解析出我们需要的IP地 ...

  7. TCP系列31—窗口管理&流控—5、TCP流控与滑窗

    一.TCP流控 之前我们介绍过TCP是基于窗口的流量控制,在TCP的发送端会维持一个发送窗口,我们假设发送窗口的大小为N比特,网络环回时延为RTT,那么在网络状况良好没有发生拥塞的情况下,发送端每个R ...

  8. 【week6】psp

    本周psp

  9. PAT 甲级 1048 Find Coins

    https://pintia.cn/problem-sets/994805342720868352/problems/994805432256675840 Eva loves to collect c ...

  10. 第三章 持续集成jenkins工具使用之邮件配置

    1   Email Extension Plugin插件安装 持续集成很重要的一环就是及时将构建结果通知到对应的责任人,如:构建失败了,至少需要下发通知给造成本次构建失败的开发人员,如果包含自动化测试 ...