传送门

题意

有 $ 2n $ 个球排成一行,其中恰好有 $ n $ 个白球和 $ n $ 个黑球。每个球上写着数字,其中白球上的数字的并集为 $ \lbrace 1 \dots n\rbrace $ ,黑球上的数字的并集也为 $ \lbrace 1 \dots n\rbrace $ 。

你可以交换任意两个相邻的球若干次,以使得对于所有白球,数字大小从左到右递增,黑球也是一样。

问你最少的交换次数。$ (n \leq 2000) $

题解

如果所有球最后的位置 $ P(i) $ 已经确定,那么最少交换次数 $ ans $ 为:

\[ans = \sum_{i=1}^{2n} \sum_{j=i+1}^{2n} [P(i) > P(j)]
\]

也就是相对位置改变了的球对 $ (i,j) $ 的个数。

然后考虑如何dp。

由于白球和黑球内部,数字大小递增,所以可以考虑从左到右依次填球。

$ dp[i][j] $ 表示已经从左到右填了 $ i $ 个白球,$ j $ 个黑球,此时的最小代价。

则最终答案就是 $ dp[n][n] $

然后考虑如何转移。

对于 $ dp[i][j] $ 来说,接下来要么填一个白球,要么填一个黑球。

设 $ costw[i][j] $ 表示已经填了 $ i $ 个白球,$ j $ 个黑球,该填第 $ i+1 $ 个白球,会增加的代价。

同理 $ costb[i][j] $ 表示已经填了 $ i $ 个白球,$ j $ 个黑球,该填第 $ j+1 $ 个黑球,会增加的代价。

则有转移:

\[dp[i][j] = min(dp[i-1][j]+costw[i-1][j],dp[i][j-1]+costb[i][j-1])
\]

边界条件为 $ dp[0][0] = 0 $

dp的复杂度为 $ O(n^2) $

对于 $ cost $ 数组来说,同样可以 $ O(n^2) $ 预处理。

首先可以 $ O(n^2) $ 暴力处理出所有 $ cost[i][0] $ 和 $ costb[0][j] $

设 $ P_w[i] $ 表示写着数字 $ i $ 的白球的初始位置,$ P_b[i] $ 表示写着数字 $ i $ 的黑球的初始位置。

则对于 $ cost $ 数组来说,有如下递推:

\[costw[i][j] = costw[i][j-1] + [P_b[j] > P_w[i+1]]
\]

\[costb[i][j] = costb[i-1][j] + [P_w[i] > P_b[j+1]]
\]

所以预处理总复杂度也是 $ O(n^2) $ 的。

AC Code

#include <iostream>
#include <stdio.h>
#include <string.h>
#define MAX_N 2005 using namespace std; int n;
int pw[MAX_N];
int pb[MAX_N];
int dp[MAX_N][MAX_N];
int costw[MAX_N][MAX_N];
int costb[MAX_N][MAX_N]; void read()
{
scanf("%d",&n);
char s[4]; int x;
for(int i=1;i<=(n<<1);i++)
{
scanf("%s%d",s,&x);
if(s[0]=='W') pw[x]=i;
else pb[x]=i;
}
} void cal_c()
{
for(int i=0;i<n;i++)
{
for(int j=1;j<=i;j++) costw[i][0]+=(pw[j]>pw[i+1]);
for(int j=1;j<=n;j++) costw[i][j]=costw[i][j-1]+(pb[j]>pw[i+1]);
}
for(int j=0;j<n;j++)
{
for(int i=1;i<=j;i++) costb[0][j]+=(pb[i]>pb[j+1]);
for(int i=1;i<=n;i++) costb[i][j]=costb[i-1][j]+(pw[i]>pb[j+1]);
}
} void cal_dp()
{
memset(dp,0x3f,sizeof(dp));
dp[0][0]=0;
for(int i=0;i<=n;i++)
{
for(int j=0;j<=n;j++)
{
if(i) dp[i][j]=min(dp[i][j],dp[i-1][j]+costw[i-1][j]);
if(j) dp[i][j]=min(dp[i][j],dp[i][j-1]+costb[i][j-1]);
}
}
} void work()
{
cal_c();
cal_dp();
printf("%d\n",dp[n][n]);
} int main()
{
read();
work();
}

AtCoder ARC097C Sorted and Sorted:dp的更多相关文章

  1. arc 097 E - Sorted and Sorted

    E - Sorted and Sorted Time limit : 2sec / Memory limit : 1024MB Score : 600 points Problem Statement ...

  2. Atcoder D - 3N Numbers(优先队列+dp)

    题目链接:http://abc062.contest.atcoder.jp/tasks/arc074_b 题意:给出3*n个数要求去掉n个数使得剩下的前n个数-后n个数的差最大. 题解:显然是一道如果 ...

  3. AtCoder Beginner Contest 247 F - Cards // dp + 并查集

    原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...

  4. UVa 10934 Dropping water balloons:dp(递推)

    题目链接:https://vjudge.net/problem/27377/origin 题意: 有一栋n层高的楼,并给你k个水球.在一定高度及以上将水球扔下,水球会摔破:在这个高度以下扔,水球不会摔 ...

  5. HDU 1028 Ignatius and the Princess III:dp or 母函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 题意: 给你一个正整数n,将n拆分成若干个正整数之和,问你有多少种方案. 注:"4 = ...

  6. Codeforces 893E Counting Arrays:dp + 线性筛 + 分解质因数 + 组合数结论

    题目链接:http://codeforces.com/problemset/problem/893/E 题意: 共q组数据(q <= 10^5),每组数据给定x,y(x,y <= 10^6 ...

  7. BZOJ 1677 [Usaco2005 Jan]Sumsets 求和:dp 无限背包 / 递推【2的幂次方之和】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1677 题意: 给定n(n <= 10^6),将n分解为2的幂次方之和,问你有多少种方 ...

  8. BZOJ 2023 [Usaco2005 Nov]Ant Counting 数蚂蚁:dp【前缀和优化】

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2023 题意: 有n个家族,共m只蚂蚁(n <= 1000, m <= 1000 ...

  9. mine:dp

    一个小的线性dp.方法很多,八仙过海各显神通. 我想讲一下我的: #include<cstdio> #define mod 1000000007 ];][][],n;//是不是雷,右边有没 ...

随机推荐

  1. 巨蟒python全栈开发数据库前端5:JavaScript1

    1.js介绍&变量&基础数据类型 2.类型查询&运算符&if判断&for循环 3.while循环&三元运算符 4.函数 5.今日总结 1.js介绍&am ...

  2. MVC异步消息推送机制

    在MVC里面,有异步控制器,可以实现模拟消息推送机制功能 1.控制器要继承至AsyncController,如 public class RealTimeController : AsyncContr ...

  3. phpstrrchr()函数的问题

    strrchr — 查找指定字符在字符串中的最后一次出现 说明 string strrchr ( string $haystack , mixed $needle ) 该函数返回 haystack 字 ...

  4. 浅谈REDIS数据库的键值设计(转)

    add by zhj: 关系数据库表的一条记录可以映射成Redis中的一个hash类型,其实数据库记录本来就是键值对.这样,要比本文中的键设计用更少的键,更节省内存,因为每个键除了它的键值占用内存外, ...

  5. Pandas 如何去除、取消已经设置好的索引

    Outline 今天处理数据时遇到一个问题: 因为业务需要,我对 df 进行了建立索引. 具体如下: 下面走的是默认索引 给其设置索引: 取消索引 业务需求,我要取消掉上面设置的索引: So,之前设置 ...

  6. Django组件 - Django请求生命周期、中间件

    一.Django请求生命周期 在学习中间件之前,先了解一下Django的请求生命周期,如下图: 1)client代表浏览器,浏览器内部为我们封装了socket,Django的WSGI模块也封装了soc ...

  7. n个数里选出m个不重复的数

    void change(int *p,int a,int b) { int tmp = *(p + a); *(p + a) = *(p + b); *(p + b) = tmp; } int mai ...

  8. android 布局属性详解

    Android功能强大,界面华丽,但是众多的布局属性就害苦了开发者,下面这篇文章结合了网上不少资料. 第一类:属性值为true或falseandroid:layout_centerHrizontal ...

  9. 深入ff and ffbase

    用ff 包读取一个csv 文件 >options(fftempdir = [二进制文件存放的位置]) >file_chunks <- read.csv.ffdf(file=”big_ ...

  10. pc端用微信扫一扫实现微信第三方登陆

    官方文档链接 第一步:获取AppID  AppSecret (微信开发平台申请PC端微信登陆)   第二步:生成扫描二维码,获取code https://open.weixin.qq.com/conn ...