题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102

Constructing Roads

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 14172    Accepted Submission(s):
5402

Problem Description
There are N villages, which are numbered from 1 to N,
and you should build some roads such that every two villages can connect to each
other. We say two village A and B are connected, if and only if there is a road
between A and B, or there exists a village C such that there is a road between A
and C, and C and B are connected.

We know that there are already some
roads between some villages and your job is the build some roads such that all
the villages are connect and the length of all the roads built is
minimum.

 
Input
The first line is an integer N (3 <= N <= 100),
which is the number of villages. Then come N lines, the i-th of which contains N
integers, and the j-th of these N integers is the distance (the distance should
be an integer within [1, 1000]) between village i and village j.

Then
there is an integer Q (0 <= Q <= N * (N + 1) / 2). Then come Q lines, each
line contains two integers a and b (1 <= a < b <= N), which means the
road between village a and village b has been built.

 
Output
You should output a line contains an integer, which is
the length of all the roads to be built such that all the villages are
connected, and this value is minimum.
 
Sample Input
3
0 990 692
990 0 179
692 179 0
1
1 2
 
Sample Output
179
 
题目大意:第一行表示n*n的矩阵,然后输入矩阵,表示的就是1到1的距离,1到2的距离。。。。第二行是2到1的距离,2到2的距离。。。。以此类推~
然后在输入一行,表示下面有几组数据,下面输入的两个数就是表示两个之间有路,不需要再建了,最后就是输出能够连通所有道路的最短路了!!!
 
一个最小生成树prim就可以解决了!哇哈哈~
 
 #include <iostream>
#include <cstdio>
using namespace std;
int map[][],node[],Min,n,a,b;
const int INF=; int prim()
{
int vis[]= {};
int tm=,m,s=;
vis[tm]=;
node[tm]=;
for (int k=; k<=n; k++)
{
Min=INF;
for (int i=; i<=n; i++)
if (!vis[i])
{
if (node[i]>map[tm][i])
node[i]=map[tm][i];
if (Min>node[i])
{
Min=node[i];
m=i;
}
//s+=Min;
}
tm=m;
vis[m]=; }
for (int i=; i<=n; i++)
s+=node[i];
return s;
} int main ()
{
while (cin>>n)
{
//cout<<n<<endl;
for (int i=; i<=n; i++)
{
node[i]=INF;
for (int j=; j<=n; j++)
map[i][j]=INF;
}
for (int i=; i<=n; i++)
{
for (int j=; j<=n; j++)
{
cin>>map[i][j];
}
}
int q;
cin>>q;
while (q--)
{
cin>>a>>b;
map[a][b]=map[b][a]=;
}
printf ("%d\n",prim());
}
return ;
}
 

hdu 1102 Constructing Roads (最小生成树)的更多相关文章

  1. HDU 1102 Constructing Roads (最小生成树)

    最小生成树模板(嗯……在kuangbin模板里面抄的……) 最小生成树(prim) /** Prim求MST * 耗费矩阵cost[][],标号从0开始,0~n-1 * 返回最小生成树的权值,返回-1 ...

  2. hdu 1102 Constructing Roads(最小生成树 Prim)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Problem Description There are N villages, which ...

  3. (step6.1.4)hdu 1102(Constructing Roads——最小生成树)

    题目大意:输入一个整数n,表示村庄的数目.在接下来的n行中,每行有n列,表示村庄i到村庄 j 的距离.(下面会结合样例说明).接着,输入一个整数q,表示已经有q条路修好. 在接下来的q行中,会给出修好 ...

  4. HDU 1102 Constructing Roads(最小生成树,基础题)

    注意标号要减一才为下标,还有已建设的路长可置为0 题目 #define _CRT_SECURE_NO_WARNINGS #include <stdio.h> #include<str ...

  5. HDU 1102 Constructing Roads, Prim+优先队列

    题目链接:HDU 1102 Constructing Roads Constructing Roads Problem Description There are N villages, which ...

  6. HDU 1102(Constructing Roads)(最小生成树之prim算法)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Ja ...

  7. hdu 1102 Constructing Roads (Prim算法)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 Constructing Roads Time Limit: 2000/1000 MS (Jav ...

  8. hdu 1102 Constructing Roads Kruscal

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1102 题意:这道题实际上和hdu 1242 Rescue 非常相似,改变了输入方式之后, 本题实际上更 ...

  9. HDU 1102 Constructing Roads

    Constructing Roads Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Other ...

随机推荐

  1. [CLR via C#]引用类型和值类型

    一.引用类型与值类型的区别 CLR支持两种类型:引用类型和值类型.引用类型总是从托管堆上分配的,C#的new操作符会返回对象的内存地址.使用引用类型时,必须注意到一些性能问题. 1)内存必须从托管堆上 ...

  2. InnoDB,select为啥会阻塞insert?

    MySQL的InnoDB的细粒度行锁,是它最吸引人的特性之一. 但是,如<InnoDB,5项最佳实践>所述,如果查询没有命中索引,也将退化为表锁. InnoDB的细粒度锁,是实现在索引记录 ...

  3. springBoot @Enable*注解的工作原理

    使用注解实现异步 RunnableDemo类 package com.boot.enable.bootenable; import org.springframework.scheduling.ann ...

  4. ictclas4j 分词工具包 安装流程

    首先把 ictclasj解压缩,然后 1.把 Data文件夹整个拷贝到 Eclipse项目的文件夹下, 2.而 bin目录下的 org文件夹整个拷贝到你 Eclipse项目的 bin目录下,(将cla ...

  5. [洛谷P3627][APIO2009]抢掠计划

    题目大意:给你一张$n(n\leqslant5\times10^5)$个点$m(m\leqslant5\times10^5)$条边的有向图,有点权,给你起点和一些可能的终点.问从起点开始,到任意一个终 ...

  6. [AHOI2009]最小割 最小割可行边&必须边

    ~~~题面~~~ 题解: 做这题的时候才知道有最小割可行边和必须边这种东西..... 1,最小割可行边, 意思就是最小割中可能出现的边. 充要条件: 1,满流 2,在残余网络中找不到x ---> ...

  7. BZOJ1086:[SCOI2005]王室联邦——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=1086 题面源于洛谷. 题目描述 “余”人国的国王想重新编制他的国家.他想把他的国家划分成若干个省,每 ...

  8. mysql 读写分离实现资料

    以下很多链接需要 FQ才能看到,稍后会整理翻译成中文! Easy Read/Write Splitting with PHP’s MySQLnd https://blog.engineyard.com ...

  9. mysql jdbc 连接url

    jdbc url连接地址格式: jdbc:mysql://[host][,failoverhost...][:port]/[database] [?propertyName1][=propertyVa ...

  10. PowerDesigner 快捷键

    一般快捷键 快捷键 说明 F4 打开检查模型窗口,检查模型 F5 如果图窗口内的图改变过大小,恢复为原有大小即正常大小 F6 放大图窗口内的图 F7 缩小图窗口内的图 F8 在图窗口内中查看全部图内容 ...