[创建目录]
hdfs dfs -mkdir -p /user/hdfs/sample_data/parquet

[赋予权限]
sudo -u hdfs hadoop fs -chown -R impala:supergroup /user/hdfs/sample_data

[删除目录]
hdfs dfs -rm -r /user/hdfs/sample_data/parquet

[上传文件]
hdfs dfs -put -f device /user/hdfs/sample_data/parquet
hdfs dfs -put -f metrics /user/hdfs/sample_data/parquet

[查看文件]
hdfs dfs -ls /user/hdfs/sample_data/parquet

[impala建表,不带分区](创建表之后,还需要通过下面的alter语句添加分区)
DROP TABLE IF EXISTS device_parquet;
CREATE EXTERNAL TABLE device_parquet
(
deviceId STRING,
deviceName STRING,
orgId STRING
)

STORED AS PARQUET
LOCATION '/user/hdfs/sample_data/parquet/device';

[impala建表,带分区]
DROP TABLE IF EXISTS metrics_parquet;
CREATE EXTERNAL TABLE metrics_parquet
(
deviceId STRING,
reading BIGINT,
time STRING
)
partitioned by (year string)
STORED AS PARQUET
LOCATION '/user/hdfs/sample_data/parquet/metrics';

[添加表分区]
alter table metrics_parquet add partition (year="2017");
alter table metrics_parquet add partition (year="2018");

[删除分区]
alter table metrics_parquet drop partition (year="2017");
alter table metrics_parquet drop partition (year="2018");

[查看表分区]
show partitions metrics_parquet;

[不指定分区查询数据]
select
T_3C75F1.`deviceId`,
year(T_3C75F1.`time`),
month(T_3C75F1.`time`),
sum(T_3C75F1.`reading`),
count(1)
from (select device_parquet.deviceId,reading,metrics_parquet.time as time from device_parquet,metrics_parquet where device_parquet.deviceId=metrics_parquet.deviceId) as `T_3C75F1`
group by
T_3C75F1.`deviceId`,
year(T_3C75F1.`time`),
month(T_3C75F1.`time`);

耗时:device表50条,metrics表1亿条(261M)执行上面的查询语句,耗时平均135秒

[指定分区查询数据]
select
T_3C75F1.`deviceId`,
year(T_3C75F1.`time`),
month(T_3C75F1.`time`),
sum(T_3C75F1.`reading`),
count(1)
from (select device_parquet.deviceId,reading,metrics_parquet.time as time from device_parquet,metrics_parquet where device_parquet.deviceId=metrics_parquet.deviceId and year='2017') as `T_3C75F1`
group by
T_3C75F1.`deviceId`,
year(T_3C75F1.`time`),
month(T_3C75F1.`time`);

耗时:device表50条,metrics表1亿条(261M)执行上面的查询语句,耗时平均96秒

[查询多个分区的数据]
select
T_3C75F1.`deviceId`,
year(T_3C75F1.`time`),
month(T_3C75F1.`time`),
sum(T_3C75F1.`reading`),
count(1)
from (select device_parquet.deviceId,reading,metrics_parquet.time as time from device_parquet,metrics_parquet where device_parquet.deviceId=metrics_parquet.deviceId and year in ('2017','2018')) as `T_3C75F1`
group by
T_3C75F1.`deviceId`,
year(T_3C75F1.`time`),
month(T_3C75F1.`time`);

[刷新数据](hdfs中数据发生变化时,需要执行以下命令更新impala)
refresh device_parquet;
refresh metrics_parquet;

impala+hdfs+parquet格式文件的更多相关文章

  1. impala+hdfs+csv格式文件

    [创建目录]hdfs dfs -mkdir -p /user/hdfs/sample_data/csv/devicehdfs dfs -mkdir -p /user/hdfs/sample_data/ ...

  2. Parquet 格式文件

    Apache Parquet是Hadoop生态圈中一种新型列式存储格式,它可以兼容Hadoop生态圈中大多数计算框架(Hadoop.Spark等),被多种查询引擎支持(Hive.Impala.Dril ...

  3. Flink生成Parquet格式文件实战

    1.概述 在流数据应用场景中,往往会通过Flink消费Kafka中的数据,然后将这些数据进行结构化到HDFS上,再通过Hive加载这些文件供后续业务分析.今天笔者为大家分析如何使用Flink消费Kaf ...

  4. Parquet 格式文件,查看Schema

    需要社区工具:parquet-tools-1.6.0rc3-SNAPSHOT.jar                  git project: https://github.com/apache/p ...

  5. Hive 导入 parquet 格式数据

    Hive 导入 parquet 数据步骤如下: 查看 parquet 文件的格式 构造建表语句 倒入数据 一.查看 parquet 内容和结构 下载地址 社区工具 GitHub 地址 命令 查看结构: ...

  6. Hive 导入 parquet 格式数据(未完,待续)

    Hive 导入 parquet 格式数据 Parquet 格式文件,查看Schema Parquet 之mapreduce Hive 导入 parquet 格式数据

  7. java 读写Parquet格式的数据 Parquet example

    import java.io.BufferedReader; import java.io.File; import java.io.FileReader; import java.io.IOExce ...

  8. 大数据学习day25------spark08-----1. 读取数据库的形式创建DataFrame 2. Parquet格式的数据源 3. Orc格式的数据源 4.spark_sql整合hive 5.在IDEA中编写spark程序(用来操作hive) 6. SQL风格和DSL风格以及RDD的形式计算连续登陆三天的用户

    1. 读取数据库的形式创建DataFrame DataFrameFromJDBC object DataFrameFromJDBC { def main(args: Array[String]): U ...

  9. 大数据【二】HDFS部署及文件读写(包含eclipse hadoop配置)

    一 原理阐述 1' DFS 分布式文件系统(即DFS,Distributed File System),指文件系统管理的物理存储资源不一定直接连接在本地节点上,而是通过计算机网络与节点相连.该系统架构 ...

随机推荐

  1. (转)Linux下内存映射文件的用法简介

    简介: 内存映射文件与虚拟内存有些类似,通过内存映射文件可以保留一个地址空间的区域,同时将物理存储器提交给此区域,只是内存文件映射的物理存储器来自一个已经存在于磁盘上的文件,而非系统的页文件,而且在对 ...

  2. java匿名内部类之RocketMQ中的应用

    匿名内部类在spring中没怎么见用,在RocketMQ中有大量的应用. 确实可以提高开发效率.这可能代表两种写代码的态度吧. 匿名内部类简单来说就是直接在函数中实现接口方法,不需要声明一个接口实现类 ...

  3. poj 1284 Primitive Roots(原根+欧拉函数)

    http://poj.org/problem?id=1284 fr=aladdin">原根 题意:对于奇素数p,假设存在一个x(1<x<p),(x^i)%p两两不同(0&l ...

  4. in_array() 和array_search的区别

    在判断字符串是否在某个数组里面的时候,我们会经常用到in_array()和array_search这两个函数. 他们的用法都是在数组中搜索给定的值,但是不同的是, in_array()给定的值 val ...

  5. 关于js加密解密

    有的时候有些网站的js用简单的eval混淆加密了.解密其实很简单的 解密JS的eval加密码的方式例如这段: 很多朋友以为这段代码是“加密”的,其实这也谈不上是加密,只能算是一种编码(Encode)或 ...

  6. 【资料总结】html开发小实例

    目 录 第1章 1 HTML的基本标签 1 第2章 25 表格基础 25 第3章 53 表单和框架 53 第4章 77 CSS样式表 77 第5章 104 使用Dreamweaver制作网页 104 ...

  7. 怎样将游戏从Unity导到iOS设备上

    当我开始开发自己的iOS游戏时,我会考虑的第一件事便是如何将其导出到设备中,如此有效地测试我的游戏.最初,该过程看似很长且复杂,我所遇到的主要问题是,尽管存在许多资源,但是它们并非完全来自同样的地方, ...

  8. android4.4系统永不锁屏

    android4.4\frameworks\base\packages\Keyguard\src\com\android\keyguard\KeyguardViewMediator.java /** ...

  9. mui ajax方法

    mui ajax方法详解: mui提供了mui.ajax,在此基础上有分装出mui.get()/mui.getJSON()/mui.post()三个方法. mui.ajax( url [,settin ...

  10. OpenERP(odoo)开发实例之搜索检索过去3个月的数据

    转自:http://www.chinamaker.net/ OpenERP(odoo)开发实例之搜索过滤:检索过去3个月的数据 解决这个问题的重点在于 relativedelta 的应用 示例代码如下 ...