/**
题目:hdu1695 GCD
链接:http://acm.hdu.edu.cn/status.php
题意:对于给出的 n 个询问,每次求有多少个数对 (x,y) ,
满足 a ≤ x ≤ b , c ≤ y ≤ d ,且 gcd(x,y) = k ,(5,7),(7,5)看做同一对, gcd(x,y) 函数为 x 和 y 的最大公约数。
本题默认:a = c = 1;
0 < a <= b <= 100,000, 0 < c <= d <= 100,000, 0 <= k <= 100,000
思路:
首先容斥:ans = solve(b,d,k)-solve(b,c-1,k)-solve(a-1,d,k)+solve(a-1,c-1,k); solve(n,m,k)表示x在[1,n],y在[1,m] gcd(x,y)==k的对数。 定义:
f(n)表示gcd(x,y)=n的数量。
F(n)表示gcd(x,y)是n的倍数的数量。 如何求F(n)? F(n) = (x/n) * (y/n); 要加括号,因为这是取整之后的乘积 根据定义用第二种形式:f(n) = sigma(mu[d/n]*F(d)) (n|d) 这样只要枚举k的倍数一直到min(n,m)就可以了。可是如果k=1,那么枚举一次就是O(N);总复杂度为O(N*N); 实际上可以继续优化; solve(n,m,k)等价于solve(n/k,m/k)表示x在[1,n/k],y在[1,m/k],gcd(x,y)==1的对数。 由于x/i,x/(i+1),x/(i+2)...x/(i+t)存在连续相同的结果,也就是这段区间[l,r]内(n/i)*(m/i)的结果是相同的; 这样i在[l,r] 范围内的(n/i)*(m/i)*mu[i];就等价于 (n/i)*(m/i)*(sum[r]-sum[l-1]); sum表示mu的前缀和。 所以这里可以快速处理。复杂度为sqrt(N); 总时间复杂度为N*sqrt(N); 参考:https://wenku.baidu.com/view/fbec9c63ba1aa8114431d9ac.html */
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <set>
#include <iostream>
#include <vector>
#include <map>
using namespace std;
typedef long long LL;
#define ms(x,y) memset(x,y,sizeof x)
typedef pair<int, int> P;
const LL INF = 1e10;
const int mod = 1e9 + ;
const int maxn = 1e5 + ;
int prime[maxn], tot, not_prime[maxn];
int mu[maxn], sum[maxn];
void init()
{
mu[] = ;
tot = ;
for(int i = ; i < maxn; i++){
if(!not_prime[i]){
prime[++tot] = i;
mu[i] = -;
}
for(int j = ; prime[j]*i<maxn; j++){
not_prime[prime[j]*i] = ;
if(i%prime[j]==){
mu[prime[j]*i] = ;
break;
}
mu[prime[j]*i] = -mu[i];
}
}
for(int i = ; i < maxn; i++) sum[i] = sum[i-]+mu[i];
}
LL solve(int n,int m)
{
LL ans = ;
if(n>m) swap(n,m);
int last;
for(int i = ; i <= n; i=last+){
last = min(n/(n/i),m/(m/i));
ans += (LL)(sum[last]-sum[i-])*(n/i)*(m/i);
}
return ans;
}
int main()
{
//freopen("in.txt","r",stdin);
int T;
int a, b, c, d, k;
int cas = ;
init();
cin>>T;
while(T--)
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
if(k==){
printf("Case %d: 0\n",cas++);continue;
}
if(b>d) swap(b,d);
///solve(b/k,d/k)这一部分多计算了[1,b/k]与[1,b/k]之间互质的对数。
printf("Case %d: %lld\n",cas++,solve(b/k,d/k)-solve(b/k,b/k)/);
}
return ;
}

hdu1695 GCD 莫比乌斯反演做法+枚举除法的取值 (5,7),(7,5)看做同一对的更多相关文章

  1. Problem b 莫比乌斯反演+枚举除法的取值

    莫比乌斯反演+枚举除法的取值 第二种形式: f(n)表示gcd(x,y)=n的数量. F(n)表示gcd(x,y)是n的倍数的数量. /** 题目:Problem b 链接:https://vjudg ...

  2. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  3. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  4. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  5. BZOJ2818: Gcd 莫比乌斯反演

    分析:筛素数,然后枚举,莫比乌斯反演,然后关键就是分块加速(分块加速在上一篇文章) #include<cstdio> #include<cstring> #include< ...

  6. hdu1695(莫比乌斯反演)

    传送门:GCD 题意:求[1,n],[1,m]gcd为k的对数. 分析:莫比乌斯入反演门题,gcd(x,y)==k等价于gcd(x/k,y/k)==1,求出[1,n][1,m]互质的对数,在减去[1, ...

  7. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  8. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

  9. 【BZOJ2818】Gcd [莫比乌斯反演]

    Gcd Time Limit: 10 Sec  Memory Limit: 256 MB[Submit][Status][Discuss] Description 给定整数N,求1<=x,y&l ...

随机推荐

  1. 使用node中的express解决vue-cli加载不到dev-server.js的问题

    在使用vue开发过程中,难免需要去本地数据地址进行请求,而原版配置在dev-server.js中,新版vue-webpack-template已经删除dev-server.js,改用webpack.d ...

  2. 【笔记】js原生方法 在元素外部或内部实现添加元素功能(类似jq 的 insert 和 append)

    介绍的这个方法是:insetAdjacentHTML() 方法 此方法接收两个参数: 第一个参数必为下列值: beforebegin:在调用的元素外部的前面添加一个目标元素 afterend:在调用元 ...

  3. MySQL外键及级联删除 && 表的存储引擎与创建索引 && 删除数据库和表

    Messages表: mysql>create table Messages( ->message_id int auto_increment primary key, ->user ...

  4. LR打不开浏览器的解决方法

        很久没用LoadRunner了,今天想复习一下,免得技能生疏,安装了一个LR11,跑一下,竟然打不开IE浏览器: 这时肯定是靠谷哥跟度娘的,经过一轮搜索,可以解决打开IE了,但录制不了解决,又 ...

  5. centos vim 7.3 升级 + vim 简单配置文件

    CentOS5自带VIM为2006年的7.0版本,现在很多插件都是针对7.3开发的,决定编译升级VIM7.3版. 编译安装VIM7.3: cd /usr/local/src/ wget ftp://f ...

  6. 微信小程序自定义分享图片

    自定义分享图片 onShareAppMessage: (res) => { if (res.from === 'button') { console.log("来自页面内转发按钮&qu ...

  7. maven modules

    所有用Maven管理的真实的项目都应该是分模块的,每个模块都对应着一个pom.xml.它们之间通过继承和聚合(也称作多模块,multi-module)相互关联.那么,为什么要这么做呢?我们明明在开发一 ...

  8. mongodb进阶三之mongodb管理

    http://blog.csdn.net/stronglyh/article/details/46827141 平时的开发环境win比較多啊,但生产环境要放到unix环境上 一:命令 安装就不少了,网 ...

  9. 2013夏,iDempiere来了 - v1.0c Installers (Devina LTS Release) 2013-06-27

    怀揣着为中小企业量身定做一整套开源软件解决方案的梦想开始了一个网站的搭建.http://osssme.org/ iDempiere来了 - v1.0c Installers (Devina LTS R ...

  10. 单例模式的Oracle 数据库连接应用

    新建一个类来实现单例模式的Oracle 数据库连接应用 组织架构如下: 类的具体代码如下: package com.zse.dba; import java.sql.*; //设计模式1:单例模式.保 ...