POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description
Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.
There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.
You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.
Input
The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following nlines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xi, yi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.
Output
Write four numbers x1, y1, x2, y2 to the output file, where (x1, y1) and (x2, y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.
If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.
题目大意:给一个凸多边形围成的房子,顺时针给出点,再给两块半径为r的地毯,要求地毯覆盖面积最大且地毯不能切割or折叠,求地毯最大面积覆盖的时候地毯的圆心坐标,任意输出一组解
思路:房子所有边向内移动r,得到一个凸包,凸包上的最远点对即答案之一
PS:数据在http://neerc.ifmo.ru/past/index.html上面有,虽然很多人说这题JPS有问题,但我在WA了无数次之后发现其实还是自己的代码有问题(打错了一个变量名囧)……
暴力枚举最远点对(好牛逼的数据量):
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 1000 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
bool operator == (const Point &b) const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} struct Line {
Point s, e;
double ag;
}; struct polygon {
Point v[MAXN];
int n;
} pg, res; inline double dist(Point &a, Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
}
//cross_point
Point operator * (const Line &a, const Line &b) {
Point res;
double u = Cross(a.s, a.e, b.s), v = Cross(a.e, a.s, b.e);
res.x = (b.s.x * v + b.e.x * u)/(u + v);
res.y = (b.s.y * v + b.e.y * u)/(u + v);
return res;
} int parallel(Line a, Line b) {
double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x);
return sgn(u) == ;
} inline void set_vector(double x1, double y1, double x2, double y2, Line &v) {
v.s.x = x1; v.s.y = y1;
v.e.x = x2; v.e.y = y2;
v.ag = atan2(y2 - y1, x2 - x1);
} Line vct[MAXN], deq[MAXN]; bool cmp(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(Cross(b.s, b.e, a.s)) < ;
return a.ag < b.ag;
} int half_planes_cross(Line *v, int vn) {
int i, n;
//sort(v, v + vn, cmp);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(parallel(deq[tail - ], deq[tail]) || parallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[head] * deq[head + ])) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(Cross(deq[head].s, deq[head].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(deq[tail].s, deq[tail].e, deq[head] * deq[head + ])) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.v[res.n++] = deq[i] * deq[i + ];
res.v[res.n++] = deq[head] * deq[tail];
res.n = unique(res.v, res.v + res.n) - res.v;
res.v[res.n] = res.v[];
return true;
} void moving(Line v[], int vn, double r) {
for(int i = ; i < vn; ++i) {
double dx = v[i].e.x - v[i].s.x, dy = v[i].e.y - v[i].s.y;
dx = dx / dist(v[i].s, v[i].e) * r;
dy = dy / dist(v[i].s, v[i].e) * r;
v[i].s.x += dy; v[i].e.x += dy;
v[i].s.y -= dx; v[i].e.y -= dx;
}
} int main() {
int n;
double r;
while(scanf("%d%lf", &n, &r) != EOF) {
for(int i = ; i < n; ++i) scanf("%lf%lf", &pg.v[i].x, &pg.v[i].y);
pg.v[n] = pg.v[];
for(int i = ; i < n; ++i)
set_vector(pg.v[i].x, pg.v[i].y, pg.v[i+].x, pg.v[i+].y, vct[i]);
moving(vct, n, r);
half_planes_cross(vct, n);
int ix = , jx = ;
double maxdis = ;
for(int i = ; i < res.n; ++i) {
for(int j = ; j < res.n; ++j) {
if(i == j) continue;
double t = dist(res.v[i], res.v[j]);
if(sgn(t - maxdis) > ) {
maxdis = t;
ix = i, jx = j;
}
}
}
printf("%.4f %.4f %.4f %.4f\n", res.v[ix].x, res.v[ix].y, res.v[jx].x, res.v[jx].y);
}
}
旋转卡壳求最远点对:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 1000 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
bool operator == (const Point &b) const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} struct Line {
Point s, e;
double ag;
}; struct polygon {
Point v[MAXN];
int n;
} pg, res; inline double dist(Point &a, Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
}
//cross_point
Point operator * (const Line &a, const Line &b) {
Point res;
double u = Cross(a.s, a.e, b.s), v = Cross(a.e, a.s, b.e);
res.x = (b.s.x * v + b.e.x * u)/(u + v);
res.y = (b.s.y * v + b.e.y * u)/(u + v);
return res;
} int parallel(Line a, Line b) {
double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x);
return sgn(u) == ;
} inline void set_vector(double x1, double y1, double x2, double y2, Line &v) {
v.s.x = x1; v.s.y = y1;
v.e.x = x2; v.e.y = y2;
v.ag = atan2(y2 - y1, x2 - x1);
} Line vct[MAXN], deq[MAXN]; bool cmp(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(Cross(b.s, b.e, a.s)) < ;
return a.ag < b.ag;
} int half_planes_cross(Line *v, int vn) {
int i, n;
//sort(v, v + vn, cmp);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(parallel(deq[tail - ], deq[tail]) || parallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[head] * deq[head + ])) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(Cross(deq[head].s, deq[head].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(deq[tail].s, deq[tail].e, deq[head] * deq[head + ])) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.v[res.n++] = deq[i] * deq[i + ];
res.v[res.n++] = deq[head] * deq[tail];
res.n = unique(res.v, res.v + res.n) - res.v;
res.v[res.n] = res.v[];
return true;
} void moving(Line v[], int vn, double r) {
for(int i = ; i < vn; ++i) {
double dx = v[i].e.x - v[i].s.x, dy = v[i].e.y - v[i].s.y;
dx = dx / dist(v[i].s, v[i].e) * r;
dy = dy / dist(v[i].s, v[i].e) * r;
v[i].s.x += dy; v[i].e.x += dy;
v[i].s.y -= dx; v[i].e.y -= dx;
}
} int ix, jx; double dia_roataing_calipers() {
double dia = ;
ix = jx = ;
int q = ;
for(int i = ; i < res.n; ++i) {
while(sgn(Cross(res.v[i+], res.v[i], res.v[q+]) - Cross(res.v[i+], res.v[i], res.v[q])) > )
q = (q + ) % res.n;
if(sgn(dist(res.v[i], res.v[q]) - dia) > ) {
dia = dist(res.v[i], res.v[q]);
ix = i; jx = q;
}
if(sgn(dist(res.v[i+], res.v[q]) - dia) > ) {
dia = dist(res.v[i+], res.v[q]);
ix = i+; jx = q;
}
}
return dia;
} int main() {
int n;
double r;
while(scanf("%d%lf", &n, &r) != EOF) {
for(int i = ; i < n; ++i) scanf("%lf%lf", &pg.v[i].x, &pg.v[i].y);
pg.v[n] = pg.v[];
for(int i = ; i < n; ++i)
set_vector(pg.v[i].x, pg.v[i].y, pg.v[i+].x, pg.v[i+].y, vct[i]);
moving(vct, n, r);
half_planes_cross(vct, n);
dia_roataing_calipers();
printf("%.4f %.4f %.4f %.4f\n", res.v[ix].x, res.v[ix].y, res.v[jx].x, res.v[jx].y);
}
}
POJ 3384 Feng Shui(计算几何の半平面交+最远点对)的更多相关文章
- POJ 3384 Feng Shui (半平面交)
Feng Shui Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3743 Accepted: 1150 Speci ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 3384 放地毯【半平面交】
<题目链接> 题目大意: 给出一个凸多边形的房间,根据风水要求,把两个圆形地毯铺在房间里,不能折叠,不能切割,可以重叠.问最多能覆盖多大空间,输出两个地毯的圆心坐标.多组解输出其中一个,题 ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...
- poj 3335 Rotating Scoreboard(半平面交)
Rotating Scoreboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6420 Accepted: 25 ...
随机推荐
- 微信小程序之数据传递
本文主要介绍,页面跳转间的数据传递.传递的数据类型主要有1,基本数据类型:2,对象:3,数组集合: 先告诉你,本质上都是string类型传递.但是对于对象和数组集合的传递需要小小的处理一下传递时的数据 ...
- 利用MyFlash闪回丢失数据
MyFlash is an open source tool released by Meituan-Dianping which can be used to flashback MyS ...
- es6新特性之 class 基本用法
javaScript 语言中,生成实例对象的传统方法是通过构造函数,与传统的面向对象语言(比如 C++ 和 Java)差异很大,ES6 提供了更接近传统语言的写法,引入了 class(类)这个概念,作 ...
- 【Java】集合概述Collection、Map
Java集合分为Collection和Map,Collection又分为List.Set. List中有ArrayList.LinkedList和Vector:Set中又分为HashSet和TreeS ...
- PHP通过curl向其它服务器发请求并返回数据
在很多时候,我们都需要请求第三方的服务器来获取一些数据,比如token,比如百度的主动推送,那么我们的php如何实现向第三方服务器发请求呢?我们可以通过curl来实现 首先定义请求的url,然后创建h ...
- [POJ1014]Dividing(二进制优化多重背包)
#include <cstdio> #include <algorithm> #include <cstring> using namespace std; int ...
- 笔记-python-float(‘inf’)
笔记-python-float(‘inf’) 看算法时发现了flaot(‘inf’). Python中可以用如下方式表示正负无穷: float("inf"), float(&quo ...
- JavaScript---复选框反选全选
Script <script type="text/javascript"> /*直接使用document.getElementsByName("c1&quo ...
- day 4 飞机大战-面向对象
1.飞机类 #-*- coding:utf-8 -*- import pygame import time from pygame.locals import * class HeroPlane(ob ...
- springBoot cache操作2
版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/zxd1435513775/article/details/85091793一.基本项目搭建测试项目是 ...