POJ 3384 Feng Shui(计算几何の半平面交+最远点对)
Description
Feng shui is the ancient Chinese practice of placement and arrangement of space to achieve harmony with the environment. George has recently got interested in it, and now wants to apply it to his home and bring harmony to it.
There is a practice which says that bare floor is bad for living area since spiritual energy drains through it, so George purchased two similar round-shaped carpets (feng shui says that straight lines and sharp corners must be avoided). Unfortunately, he is unable to cover the floor entirely since the room has shape of a convex polygon. But he still wants to minimize the uncovered area by selecting the best placing for his carpets, and asks you to help.
You need to place two carpets in the room so that the total area covered by both carpets is maximal possible. The carpets may overlap, but they may not be cut or folded (including cutting or folding along the floor border) — feng shui tells to avoid straight lines.
Input
The first line of the input file contains two integer numbers n and r — the number of corners in George’s room (3 ≤ n ≤ 100) and the radius of the carpets (1 ≤ r ≤ 1000, both carpets have the same radius). The following nlines contain two integers xi and yi each — coordinates of the i-th corner (−1000 ≤ xi, yi ≤ 1000). Coordinates of all corners are different, and adjacent walls of the room are not collinear. The corners are listed in clockwise order.
Output
Write four numbers x1, y1, x2, y2 to the output file, where (x1, y1) and (x2, y2) denote the spots where carpet centers should be placed. Coordinates must be precise up to 4 digits after the decimal point.
If there are multiple optimal placements available, return any of them. The input data guarantees that at least one solution exists.
题目大意:给一个凸多边形围成的房子,顺时针给出点,再给两块半径为r的地毯,要求地毯覆盖面积最大且地毯不能切割or折叠,求地毯最大面积覆盖的时候地毯的圆心坐标,任意输出一组解
思路:房子所有边向内移动r,得到一个凸包,凸包上的最远点对即答案之一
PS:数据在http://neerc.ifmo.ru/past/index.html上面有,虽然很多人说这题JPS有问题,但我在WA了无数次之后发现其实还是自己的代码有问题(打错了一个变量名囧)……
暴力枚举最远点对(好牛逼的数据量):
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 1000 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
bool operator == (const Point &b) const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} struct Line {
Point s, e;
double ag;
}; struct polygon {
Point v[MAXN];
int n;
} pg, res; inline double dist(Point &a, Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
}
//cross_point
Point operator * (const Line &a, const Line &b) {
Point res;
double u = Cross(a.s, a.e, b.s), v = Cross(a.e, a.s, b.e);
res.x = (b.s.x * v + b.e.x * u)/(u + v);
res.y = (b.s.y * v + b.e.y * u)/(u + v);
return res;
} int parallel(Line a, Line b) {
double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x);
return sgn(u) == ;
} inline void set_vector(double x1, double y1, double x2, double y2, Line &v) {
v.s.x = x1; v.s.y = y1;
v.e.x = x2; v.e.y = y2;
v.ag = atan2(y2 - y1, x2 - x1);
} Line vct[MAXN], deq[MAXN]; bool cmp(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(Cross(b.s, b.e, a.s)) < ;
return a.ag < b.ag;
} int half_planes_cross(Line *v, int vn) {
int i, n;
//sort(v, v + vn, cmp);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(parallel(deq[tail - ], deq[tail]) || parallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[head] * deq[head + ])) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(Cross(deq[head].s, deq[head].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(deq[tail].s, deq[tail].e, deq[head] * deq[head + ])) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.v[res.n++] = deq[i] * deq[i + ];
res.v[res.n++] = deq[head] * deq[tail];
res.n = unique(res.v, res.v + res.n) - res.v;
res.v[res.n] = res.v[];
return true;
} void moving(Line v[], int vn, double r) {
for(int i = ; i < vn; ++i) {
double dx = v[i].e.x - v[i].s.x, dy = v[i].e.y - v[i].s.y;
dx = dx / dist(v[i].s, v[i].e) * r;
dy = dy / dist(v[i].s, v[i].e) * r;
v[i].s.x += dy; v[i].e.x += dy;
v[i].s.y -= dx; v[i].e.y -= dx;
}
} int main() {
int n;
double r;
while(scanf("%d%lf", &n, &r) != EOF) {
for(int i = ; i < n; ++i) scanf("%lf%lf", &pg.v[i].x, &pg.v[i].y);
pg.v[n] = pg.v[];
for(int i = ; i < n; ++i)
set_vector(pg.v[i].x, pg.v[i].y, pg.v[i+].x, pg.v[i+].y, vct[i]);
moving(vct, n, r);
half_planes_cross(vct, n);
int ix = , jx = ;
double maxdis = ;
for(int i = ; i < res.n; ++i) {
for(int j = ; j < res.n; ++j) {
if(i == j) continue;
double t = dist(res.v[i], res.v[j]);
if(sgn(t - maxdis) > ) {
maxdis = t;
ix = i, jx = j;
}
}
}
printf("%.4f %.4f %.4f %.4f\n", res.v[ix].x, res.v[ix].y, res.v[jx].x, res.v[jx].y);
}
}
旋转卡壳求最远点对:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
using namespace std; #define EPS 1e-8
#define MAXN 1000 inline int sgn(double x) {
if(fabs(x) < EPS) return ;
return x > ? : -;
} struct Point {
double x, y;
Point(double xx = , double yy = ): x(xx), y(yy) {}
bool operator == (const Point &b) const {
return sgn(x - b.x) == && sgn(y - b.y) == ;
}
};
//cross
inline double operator ^ (const Point &a, const Point &b) {
return a.x * b.y - a.y * b.x;
} inline Point operator - (const Point &a, const Point &b) {
return Point(a.x - b.x, a.y - b.y);
} struct Line {
Point s, e;
double ag;
}; struct polygon {
Point v[MAXN];
int n;
} pg, res; inline double dist(Point &a, Point &b) {
return sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
} inline double Cross(Point o, Point s, Point e) {
return (s - o) ^ (e - o);
}
//cross_point
Point operator * (const Line &a, const Line &b) {
Point res;
double u = Cross(a.s, a.e, b.s), v = Cross(a.e, a.s, b.e);
res.x = (b.s.x * v + b.e.x * u)/(u + v);
res.y = (b.s.y * v + b.e.y * u)/(u + v);
return res;
} int parallel(Line a, Line b) {
double u = (a.e.x - a.s.x) * (b.e.y - b.s.y) - (a.e.y - a.s.y) * (b.e.x - b.s.x);
return sgn(u) == ;
} inline void set_vector(double x1, double y1, double x2, double y2, Line &v) {
v.s.x = x1; v.s.y = y1;
v.e.x = x2; v.e.y = y2;
v.ag = atan2(y2 - y1, x2 - x1);
} Line vct[MAXN], deq[MAXN]; bool cmp(const Line &a, const Line &b) {
if(sgn(a.ag - b.ag) == )
return sgn(Cross(b.s, b.e, a.s)) < ;
return a.ag < b.ag;
} int half_planes_cross(Line *v, int vn) {
int i, n;
//sort(v, v + vn, cmp);
for(i = n = ; i < vn; ++i) {
if(sgn(v[i].ag - v[i-].ag) == ) continue;
v[n++] = v[i];
}
int head = , tail = ;
deq[] = v[], deq[] = v[];
for(i = ; i < n; ++i) {
if(parallel(deq[tail - ], deq[tail]) || parallel(deq[head], deq[head + ]))
return false;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(v[i].s, v[i].e, deq[head] * deq[head + ])) > )
++head;
deq[++tail] = v[i];
}
while(head < tail && sgn(Cross(deq[head].s, deq[head].e, deq[tail - ] * deq[tail])) > )
--tail;
while(head < tail && sgn(Cross(deq[tail].s, deq[tail].e, deq[head] * deq[head + ])) > )
++head;
if(tail <= head + ) return false;
res.n = ;
for(i = head; i < tail; ++i)
res.v[res.n++] = deq[i] * deq[i + ];
res.v[res.n++] = deq[head] * deq[tail];
res.n = unique(res.v, res.v + res.n) - res.v;
res.v[res.n] = res.v[];
return true;
} void moving(Line v[], int vn, double r) {
for(int i = ; i < vn; ++i) {
double dx = v[i].e.x - v[i].s.x, dy = v[i].e.y - v[i].s.y;
dx = dx / dist(v[i].s, v[i].e) * r;
dy = dy / dist(v[i].s, v[i].e) * r;
v[i].s.x += dy; v[i].e.x += dy;
v[i].s.y -= dx; v[i].e.y -= dx;
}
} int ix, jx; double dia_roataing_calipers() {
double dia = ;
ix = jx = ;
int q = ;
for(int i = ; i < res.n; ++i) {
while(sgn(Cross(res.v[i+], res.v[i], res.v[q+]) - Cross(res.v[i+], res.v[i], res.v[q])) > )
q = (q + ) % res.n;
if(sgn(dist(res.v[i], res.v[q]) - dia) > ) {
dia = dist(res.v[i], res.v[q]);
ix = i; jx = q;
}
if(sgn(dist(res.v[i+], res.v[q]) - dia) > ) {
dia = dist(res.v[i+], res.v[q]);
ix = i+; jx = q;
}
}
return dia;
} int main() {
int n;
double r;
while(scanf("%d%lf", &n, &r) != EOF) {
for(int i = ; i < n; ++i) scanf("%lf%lf", &pg.v[i].x, &pg.v[i].y);
pg.v[n] = pg.v[];
for(int i = ; i < n; ++i)
set_vector(pg.v[i].x, pg.v[i].y, pg.v[i+].x, pg.v[i+].y, vct[i]);
moving(vct, n, r);
half_planes_cross(vct, n);
dia_roataing_calipers();
printf("%.4f %.4f %.4f %.4f\n", res.v[ix].x, res.v[ix].y, res.v[jx].x, res.v[jx].y);
}
}
POJ 3384 Feng Shui(计算几何の半平面交+最远点对)的更多相关文章
- POJ 3384 Feng Shui (半平面交)
Feng Shui Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3743 Accepted: 1150 Speci ...
- POJ 3384 Feng Shui(半平面交向内推进求最远点对)
题目链接 题意 : 两个圆能够覆盖的最大多边形面积的时候两个圆圆心的坐标是多少,两个圆必须在多边形内. 思路 : 向内推进r,然后求多边形最远的两个点就是能覆盖的最大面积. #include < ...
- poj 3384 Feng Shui (Half Plane Intersection)
3384 -- Feng Shui 构造半平面交,然后求凸包上最远点对. 这题的题意是给出一个凸多边形区域,要求在其中放置两个半径为r的圆(不能超出凸多边形区域),要求求出两个圆心,使得多边形中没有被 ...
- POJ 3384 Feng Shui 半平面交
题目大意:一个人很信"Feng Shui",他要在房间里放两个圆形的地毯. 这两个地毯之间可以重叠,可是不能折叠,也不能伸到房间的外面.求这两个地毯可以覆盖的最大范围.并输出这两个 ...
- POJ 3384 放地毯【半平面交】
<题目链接> 题目大意: 给出一个凸多边形的房间,根据风水要求,把两个圆形地毯铺在房间里,不能折叠,不能切割,可以重叠.问最多能覆盖多大空间,输出两个地毯的圆心坐标.多组解输出其中一个,题 ...
- POJ 3384 Feng Shui
http://poj.org/problem?id=3384 题意:给一个凸包,求往里面放两个圆(可重叠)的最大面积时的两个圆心坐标. 思路:先把凸包边往内推R,做半平面交,然后做旋转卡壳,此时得到最 ...
- POJ 3384 Feng Shui --直线切平面
题意:房间是一个凸多边形,要在里面铺设两条半径为r的圆形地毯,可以重叠,现在要求分别铺设到哪,使地毯所占的地面面积最大. 解法:要使圆形地毯所占面积最大,圆形地毯一定是与边相切的,这样才能使尽量不重叠 ...
- POJ 3384 Feng Shui 凸包直径 + 半平面交
G++一直没有过了 换成 C++果断A掉了...It's time to bet RP. 题意:给一个多边形,然后放进去两个圆,让两个圆的覆盖面积尽量最大,输出两个圆心的坐标. 思路:将多边形的边向里 ...
- poj 3335 Rotating Scoreboard(半平面交)
Rotating Scoreboard Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 6420 Accepted: 25 ...
随机推荐
- JavaScript 时间对象 date()
getYear() 获得的是距离1900年过了多少年 var d = new Date(); document.write(d+"<br />"); document. ...
- wdcp v3 pureftpd 无法登录问题解决
wdcp v3 新建站点和ftp账号 单位无法登录ftp 在端口中也确实可以看到有进行在登录状态 错误原因: 防火墙端口没有开启该端口范围 20000-30000 这时候发现 改端口为20078 ...
- 大数据学习之Hadoop环境搭建
一.Hadoop的优势 1)高可靠性:因为Hadoop假设计算元素和存储会出现故障,因为它维护多个工作数据副本,在出现故障时可以对失败的节点重新分布处理. 2)高扩展性:在集群间分配任务数据,可方便的 ...
- python学习——面向对象的三大特性
一.继承 继承是一种创建新类的方式,在python中,新建的类可以继承一个或多个父类,父类又可称为基类或超类,新建的类称为派生类或子类. 1.python中类的继承分为:单继承和多继承 class P ...
- Python中常见的字典dict处理
#字典的赋值d = [{"dasda": 123, "gsgsg": 3344}, {"dasdz": 123, "gsksg&q ...
- 如何在VMware Fusion中导入windows下的虚拟机
最近换了新款的mbp,因为偷懒,便将之前在windows台式机上的虚拟机搬了过来. 特此记录下搬运过程,方便以后查看. 一 操作过程 安装激活VMware 常规操作,无需赘言 拷贝windows下虚拟 ...
- go学习笔记-错误处理
错误处理 通过内置的错误接口提供了非常简单的错误处理机制. error类型是一个接口类型 type error interface { Error() string } 可以在编码中通过实现 erro ...
- Divisibility题解
From lyh 学长 2018.5.3 信(liang)心(liang)杯T3 一道略弱的数论题. 题目描述 给定 n个数,问是否能从中选出恰好 k个数,使得这些数两两之差可以被 m 整除. 输入输 ...
- 深入理解@RequestBody注解
我写文章历来追求通俗易懂,今天来深入探讨一下@RequestBody注解.提起这个,所有做过mvc开发的同学应该都不陌生,使用上面肯定也是信手拈来. 所以我这里就简单的提一下这个注解的使用: 1.当客 ...
- Nginx初体验(一):nginx介绍
今天我们来介绍一下Nginx. Nginx是一款轻量级的Web服务器/反向代理服务器以及电子邮件(IMAP/POP3)代理服务器 特点: 反向代理,负载均衡,动静分离 首先我们来介绍一下正向代理服务器 ...