51NOD 1149:Pi的递推式——题解
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1149
F(x) = 1 (0 <= x < 4)F(x) = F(x - 1) + F(x - pi) (4 <= x)Pi = 3.1415926535.....现在给出一个N,求F(N)。由于结果巨大,只输出Mod 10^9 + 7的结果即可。
不好想啊……以及我曾经打了个表,并且还找到了规律,结果过到29就gg了……
参考:https://www.cnblogs.com/ivorysi/p/9197222.html
(这个参考是个神,我这样的凡人能解读到这种地步已经很不容易了)
总觉得我讲的很有问题啊……那我就顺着这个参考讲吧……
将递归展开,你就会发现是一张图,而所求即为最上层点到最下层点的方案路径数。
设$P[i]$表示到$i$这个点减几次pi到达其中一个终点,于是我们到达一次终点所需要经过的整数结点(即-1)与"非整数"结点(即-pi),可以通过设前者为$n-i$,则后者为$P[i]$,路径条数就可以用组合数求出。
但是要注意的是我们只要到达其中一个目标即会停止,即5-1-pi是合法的,而5-pi-1则是不可能的,即有些pi只能放在最后减,我们需要把这些pi扣除。
其实并不存在“这些”,事实上显然我们只有一个pi,也就是说下面的关键是判断这个pi是否会导致我们提前结束。
我们考虑,只要$i$的父亲结点(其实是$i+1$,但叫做父亲节点更好懂些)$P[i+1]>P[i]$,那么我们随便了,提前拐或者不拐最终到达的状态一定一致。
但是如果不满足的话,则我们在$i+1$或更早处转弯的话,就一定会导致我们提早结束,所以此时我们扣除这个pi即可。
这是这个参考的做法,个人感觉并不如:https://blog.csdn.net/qq_36797743/article/details/78930126这个更好想一些,但是解法比较自然,顺畅。
#include<map>
#include<cmath>
#include<stack>
#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
typedef double dl;
typedef long long ll;
const dl pi=acos(-1.0);
const int p=1e9+;
const int N=1e6+;
inline int qpow(int k,int n){
int res=;
while(n){
if(n&)res=(ll)res*k%p;
k=(ll)k*k%p;n>>=;
}
return res;
}
int jc[N],inv[N],P[N];
void init(int n){
jc[]=;
for(int i=;i<=n;i++)jc[i]=(ll)jc[i-]*i%p;
inv[n]=qpow(jc[n],p-);
for(int i=n-;i;i--)inv[i]=(ll)inv[i+]*(i+)%p;
inv[]=;
}
inline int C(int n,int m){
return (ll)jc[n]*inv[m]%p*inv[n-m]%p;
}
int solve(int n){
if(n<)return ;
for(int i=;i<=n;i++)P[i]=(dl)(i-)/pi+;
int ans=;
for(int i=n;i>=;i--){
int s=n-i,t=P[i]-(P[i+]<=P[i]);
(ans+=C(s+t,s))%=p;
}
return ans;
}
int main(){
int n;
scanf("%d",&n);
init(n);
printf("%d\n",solve(n));
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/+
+++++++++++++++++++++++++++++++++++++++++++
51NOD 1149:Pi的递推式——题解的更多相关文章
- 51nod 1149 Pi的递推式(组合数学)
传送门 解题思路 首先因为\(Pi\)不是整数,所以不能直接递推.这时我们要思考这个式子的实际意义,其实\(f(i)\)就可以看做从\(i\)这个点,每次可以向右走\(Pi\)步或\(1\)步,走到[ ...
- 51nod 1149 Pi的递推式 组合数
题目大意: \(F(x) = 1 (0 \leq x < 4)\) \(F(x) = F(x-1) + F(x-\pi) (4 \leq x)\) 给定\(n\),求\(F(n)\) 题解: 我 ...
- 【51nod】1149 Pi的递推式
题解 我们把这个函数的递归形式画成一张图,会发现答案是到每个出度为0的点的路径的方案数 这个可以用组合数算 记录一下P[i]为i减几次PI减到4以内 如果P[i + 1] > P[i],那么转向 ...
- 51nod1149 Pi的递推式
基准时间限制:1 秒 空间限制:131072 KB 分值: 640 F(x) = 1 (0 <= x < 4) F(x) = F(x - 1) + F(x - pi) (4 <= x ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
- 矩阵乘法&矩阵快速幂&矩阵快速幂解决线性递推式
矩阵乘法,顾名思义矩阵与矩阵相乘, 两矩阵可相乘的前提:第一个矩阵的行与第二个矩阵的列相等 相乘原则: a b * A B = a*A+b*C a*c+b*D c d ...
- P1067Warcraft III 守望者的烦恼(十大矩阵问题之七求递推式)
https://vijos.org/p/1067 守望者-warden,长期在暗夜精灵的的首都艾萨琳内担任视察监狱的任务,监狱是成长条行的,守望者warden拥有一个技能名叫“闪烁”,这个技能可以把她 ...
- hdu 1757 A Simple Math Problem (构造矩阵解决递推式问题)
题意:有一个递推式f(x) 当 x < 10 f(x) = x.当 x >= 10 f(x) = a0 * f(x-1) + a1 * f(x-2) + a2 * f(x-3) + ...
- Tyche 2191 WYF的递推式
题目描述 WYF手中有这样一条递推式 WYF并不是想让你帮他做出结果,事实上,给定一个n,他能够迅速算出Fn.WYF只是想单纯的考验一下读者们. 输入描述 仅一行,三个整数N,F1,P 输出描述 仅一 ...
随机推荐
- Vue框架核心之数据劫持
本文来自网易云社区. 前瞻 当前前端界空前繁荣,各种框架横空出世,包括各类mvvm框架横行霸道,比如Angular.Regular.Vue.React等等,它们最大的优点就是可以实现数据绑定,再也不需 ...
- hdu2899Strange fuction(解方程+二分)
Strange fuction Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)T ...
- CSS选择器语法&示例
CSS3 选择器 在 CSS 中,选择器是一种模式,用于选择需要添加样式的元素. "CSS" 列指示该属性是在哪个 CSS 版本中定义的.(CSS1.CSS2 还是 CSS3.) ...
- 【rich-text】 富文本组件说明
[rich-text] 富文本组件可以显示HTML代码样式. 1)支持事件:tap.touchstart.touchmove.touchcancel.touchend和longtap 2)信任的HTM ...
- 数独:dfs+剪枝+位运算+排除冗余+优化搜索顺序(未完)
和蓝桥杯以前一个题一样,但是数据加强了,博主水平有限,没做出来,先在这里记录一下,这里正解,下面是博主的超时做法.最近准备考研,不能深入学习了. 题目描述 数独是一种传统益智游戏,你需要把一个9 × ...
- py3.6+anaconda下安装opencv3
py3.6+anaconda下安装opencv3 首先声明-网上的方法大多数都是有毒的.也不知道给的什么鬼方法都不行. 我说下我的方法.去这个网站https://pypi.tuna.tsinghua. ...
- oraclize预言机资料
oraclize预言机资料 智能合约如何可信的与外部世界交互: https://blog.csdn.net/sportshark/article/details/77477842 国外一篇讲得很详细的 ...
- node包管理相关
切换npm数据源 镜像使用方法(三种办法任意一种都能解决问题,建议使用第三种,将配置写死,下次用的时候配置还在): 1.通过config命令 npm config set registry https ...
- 总结python 元组和列表的区别
python的基本类型中有元组和列表这么俩个,但是这哥俩却比较难于区分,今天就来用简单的实例说明两者的不同. 列表:1.使用中括号([ ])包裹,元素值和个数可变 实例: aaa = ['sitena ...
- lintcode-16-带重复元素的排列
带重复元素的排列 给出一个具有重复数字的列表,找出列表所有不同的排列. #### 样例 给出列表 [1,2,2],不同的排列有: [ [1,2,2], [2,1,2], [2,2,1] ] 挑战 使用 ...