在飞速发展的云计算大数据时代,Spark是继Hadoop之后,成为替代Hadoop的下一代云计算大数据核心技术,目前Spark已经构建了自己的整个大数据处理生态系统,如流处理、图技术、机器学习、NoSQL查询等方面都有自己的技术,并且是Apache顶级Project,可以预计的是2014年下半年到2015年Spark在社区和商业应用上会有爆发式的增长。

Spark在业界的使用案例

Spark技术在国内外的应用开始越来越广泛,它正在逐渐走向成熟,并在这个领域扮演更加重要的角色。国外一些大型互联网公司已经部署了Spark。例如:一直支持Hadoop的四大商业机构(Cloudera、MapR、Hortonworks、EMC)已纷纷宣布支持Spark;Mahout前一阶段也表示,将不再接受任何形式以MapReduce实现的算法,同时还宣布了基于Spark新的算法;而Cloudera的机器学习框架Oryx的执行引擎也将由Hadoop的MapReduce替换成Spark;另外,Google也已经开始将负载从MapReduce转移到Pregel和Dremel上;FaceBook也宣布将负载转移到Presto上……而目前,我们国内的淘宝、优酷土豆、网易、Baidu、腾讯等企业也已经使用Spark技术在自己的商业生产系统中。

Spark是最新一代的大数据处理框架,在数据统计分析、数据挖掘、流处理、图技术、机器学习、误差查询等方面都有自己的技术,从我们的技术研究和长期业界观察来看,Spark会成为大数据时代集大成的计算框架。随着2014年5月30日Spark  1.0.0的发布,Spark已经相对稳定,可以放心使用。

Spark如何部署到生产环境

对于Spark该如何部署到生产环境中,Spark是最新一代大数据计算框架,使用时需要单独部署集群,Spark集群部署方式主要有三种:Standalone、Yarn、Mesos。一般而言,在部署的时候都会基于HDFS文件存储系统,所以,如果已经有Hadoop平台,部署Spark就非常容易,只需在平台上增加Spark功能即可。目前,国内企业淘宝使用的Spark就是基于Hadoop的yarn。当然也可以采用standalone和zookeeper的方式进行从无到有的构建Spark集群,这也是一种常见和理想的选择,并且这种方式也是官方推荐的。

企业如何做云计算大数据部署的技术选型

现在,谈到云计算大数据话题的时候很多人还是多会提到Hadoop,对Spark了解的人还不是很多,如果企业有计划要部署云计算大数据的话,如何做技术选型是很重要的。对此,Spark亚太研究院院长和首席专家王家林给出了如下建议:

如果企业以前没有云计算大数据集群,选择使用Spark要比Hadoop更为明智,原因是:首先,Hadoop本身的计算模型决定了它的所有工作都要转化成Map、Shuffle和Reduce等核心阶段,由于每次计算都要从磁盘读或者写数据,而且整个计算模型需要网络传输,这就导致越来越难以忍受的延迟性。其次,Hadoop还不能支持交互式应用。

而Spark可以轻松应对数据统计分析、数据挖掘、流处理、图技术、机器学习、误差查询等,且Spark的“One stack  rule them all”的特性也导致部署的简易性,省去多套系统部署的麻烦。

如果技术选型为Spark,那么,解决数据统计分析、实时流计算、数据挖掘基本只需要一个团队即可,而如果采用Hadoop则需要不同团队做处理每一项专门的技术,极大的增加人力成本。

另外,对于已经有Hadoop集群的公司而言,建议尝试使用Spark技术,可以从Spark的Shark或者Spark SQL开始,推荐使用Spark的实时流处理和机器学习技术。

Spark趋势,中型企业如何抉择

Spark因其部署的简易性和“One stack  to rule them all”的特点,是大数据时代中型企业处理大数据的福音。例如,Yahoo!、淘宝、优酷土豆、网易、腾讯等国内大型知名企业已经在商业生产环境下开始使用Spark技术;Intel、IBM、Linkin、Twwitter等国外大型知名企业也都在大力支持Spark。随着这些国内外大企业的使用,Spark技术的发展必然势不可挡,行业普及很快就会到来,因此对于中型企业的使用和普及,只是时间问题。中型公司如果要基于Spark进行部署,只需配备约5-20人的团队,即可在Spark上做数据分析统计、机器学习、实施流处理计算等工作。

对于电信、金融等行业,使用Spark同样势不可挡。在数据统计分析方面,Spark比Hadoop快几十倍,如果是使用内存表,Spark更是比Hadoop快100倍以上。同时Spark的实时流处理、机器学习、图计算也非常高效,可以充分满足电信、金融行业数据挖掘的需要。

作为唯一可以革命Hadoop并正在成为大数据计算框架霸主的Spark技术,由于其“One stack to rule them all”的特性(使用一个统一的技术堆栈解决了大数据处理生态系统中的流处理、图技术、机器学习、NoSQL查询等方面的技术问题),在2014年10月左右会在中国的需求有爆发之势,这种需求包含企业使用Spark的需求和Spark人才的迫切需求,同时,这种需求将不限已经使用Spark的Yahoo!、淘宝、腾讯、网易等国内大型企业,还会包含很多中小企业。

Spark部署及应用的更多相关文章

  1. Spark部署三种方式介绍:YARN模式、Standalone模式、HA模式

    参考自:Spark部署三种方式介绍:YARN模式.Standalone模式.HA模式http://www.aboutyun.com/forum.php?mod=viewthread&tid=7 ...

  2. 基于Docker搭建大数据集群(四)Spark部署

    主要内容 spark部署 前提 zookeeper正常使用 JAVA_HOME环境变量 HADOOP_HOME环境变量 安装包 微云下载 | tar包目录下 Spark2.4.4 一.环境准备 上传到 ...

  3. 大数据系列之并行计算引擎Spark部署及应用

    相关博文: 大数据系列之并行计算引擎Spark介绍 之前介绍过关于Spark的程序运行模式有三种: 1.Local模式: 2.standalone(独立模式) 3.Yarn/mesos模式 本文将介绍 ...

  4. Spark部署

    Spark的部署让人有点儿困惑,有些需要注意的事项,本来我已经装成功了YARN模式的,但是发现了一些问题,出现错误看日志信息,完全看不懂那个错误信息,所以才打算翻译Standalone的部署的文章.第 ...

  5. 再谈spark部署搭建和企业级项目接轨的入门经验(博主推荐)

    进入我这篇博客的博友们,相信你们具备有一定的spark学习基础和实践了. 先给大家来梳理下.spark的运行模式和常用的standalone.yarn部署.这里不多赘述,自行点击去扩展. 1.Spar ...

  6. Spark 部署即提交模式意义解析

    Spark 的官方从 Cluster Mode Overview 中,官方向我们介绍了 cluster 模式的部署方式. Spark 作为独立进程在集群上运行,他们通过 SparkContext 进行 ...

  7. 入门大数据---Spark部署模式与作业提交

    一.作业提交 1.1 spark-submit Spark 所有模式均使用 spark-submit 命令提交作业,其格式如下: ./bin/spark-submit \ --class <ma ...

  8. spark 部署问题

    spark的web UI 端口设置:spark-env.sh 中设置SPARK_MASTER_WEBUI_PORT 为自己想设置的端口号. 其他worker 的web UI 端口默认:8081 mas ...

  9. [Spark] - Spark部署安装

    环境:centos6.0 虚拟机 搭建单机版本的spark 前提条件:搭建好hadoop环境 1. 下载scala进行安装 只需要设置环境变量SCALA_HOME和PATH即可 export SCAL ...

随机推荐

  1. Python 装饰器和抽象类

    #装饰器:对类或者函数进行功能的扩展 ''' #第一步:基本函数 def la(): print('脚踏黄河两岸,手拿机密文件,前面机枪扫射,后面炮火连天') #调用函数 la() la() #第二步 ...

  2. AGC016C +/- Rectangle(构造)

    题目大意:给定H,W,h,w四个数,求是否满足矩阵的全部数之和和正数,h行w列之和为负数 如果h和w恰好是H,W的约数,则肯定不存在 否则肯定存在 只需要把h,w内每个元素填的足够大,然后小矩形的最后 ...

  3. Codeforces Round #383 (Div. 1) C(二分图)

    一道很巧妙的二分图的题目 简单分析性质可知,一个合法序列一定是由12,21这样的子串构成的,所以相邻的每隔2个两两配对 然后BF和GF互相配对,思考一下,如果存在奇环,那么必定有一个BG有两个GF,或 ...

  4. sql如何先排序再去重

    场景 有一张得分表(score),记录了用户每次的得分,同一个人可能有多个得分. id name score 1 tom 45 2 jack 78 3 tom 34 . . . 需求:找出分数最高的前 ...

  5. Citrix Netscaler负载均衡算法

    Citrix Netscaler负载均衡算法 http://blog.51cto.com/caojin/1926308 众所周知,作为新一代应用交付产品的Citrix Netscaler具有业内领先的 ...

  6. CF763C Timofey and Remoduling

    题目戳这里. 这道题目纯粹是考思维. 若\(2N \le M\),由于答案肯定是\(s,s+d,\dots,s+(N-1)d\),我们任意枚举两个数\(a,b\),不妨设\(b\)在数列中出现在\(a ...

  7. Codeforces Round #526 (Div. 2) E. The Fair Nut and Strings

    E. The Fair Nut and Strings 题目链接:https://codeforces.com/contest/1084/problem/E 题意: 输入n,k,k代表一共有长度为n的 ...

  8. POJ2516:Minimum Cost(最小费用最大流)

    Minimum Cost Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 19088   Accepted: 6740 题目链 ...

  9. 构建一个类jq的函数库

    jqfree core var $ = function(selector, context) { return new $.fn.init(selector, context); }; $.fn = ...

  10. 如何去掉Json字符串中反斜杠

    做项目的时候,遇到了这样的问题,前台传来的Json字符串在实体类中不对应(无法转换为实体类),而且传来的数据项是跟着数据库中的表的变动而变动的(不能重写实体类). 前台Json字符串为: string ...