Description

小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧场一直到它西边第一个控制站的所有牧场(它西边第一个控制站所在的牧场不被控制)(如果它西边不存在控制站,那么它控制西边所有的牧场),每个牧场被控制都需要一定的花费(毕竟在控制站到牧场间修建道路是需要资源的嘛~),而且该花费等于它到控制它的控制站之间的牧场数目(不包括自身,但包括控制站所在牧场)乘上该牧场的放养量,在第i个牧场建立控制站的花费是ai,每个牧场i的放养量是bi,理所当然,小P需要总花费最小,但是小P的智商有点不够用了,所以这个最小总花费就由你来算出啦。

Input

第一行一个整数 n 表示牧场数目

第二行包括n个整数,第i个整数表示ai

第三行包括n个整数,第i个整数表示bi

Output

只有一行,包括一个整数,表示最小花费

Sample Input

4
2 4 2 4
3 1 4 2

Sample Output

9
样例解释
选取牧场1,3,4建立控制站,最小费用为2+(2+1*1)+4=9。
1<=n<=1000000, 0 < a i ,bi < = 1000

Source

KpmCup#0 By Greens

Solution

1A就很开心了

非常裸的一眼斜率优化DP

设$sum_i$为$b_i$的后缀和,$s_i$为$(n-i)*b_i$的后缀和

那么DP式子很明显可以写为

$f_i=f_j+s_{j+1}-s_i-(n-i)*(sum_{j+1}-sum_{i+1})+a_i$

感性理解一下其实式很子好懂

把式子拆开后发现满足斜率单调性,直接上斜率优化就好了

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#define N (1000000+1000)
#define LL long long
using namespace std; LL n,a[N],b[N],sum[N],s[N],q[N],f[N]; LL K(LL j){return sum[j+];}
LL B(LL j){return f[j]+s[j+]-n*sum[j+];}
LL Y(LL i,LL j){return K(j)*i+B(j);} bool cover(LL x1,LL x2,LL x3)
{
LL w1=(B(x2)-B(x1))*(K(x1)-K(x3));
LL w2=(B(x3)-B(x1))*(K(x1)-K(x2));
return w1<=w2;
} int main()
{
scanf("%lld",&n);
for (int i=; i<=n; ++i) scanf("%lld",&a[i]);
for (int i=; i<=n; ++i) scanf("%lld",&b[i]);
for (int i=n; i>=; --i)
{
sum[i]=sum[i+]+b[i];
s[i]=s[i+]+(n-i)*b[i];
}
int head=,tail=;
for (int i=; i<=n; ++i)
{
while (head<tail && Y(i,q[head])>=Y(i,q[head+])) head++;
f[i]=Y(i,q[head])-s[i+]+n*sum[i+]-i*sum[i+]+a[i];
while (head<tail && cover(i,q[tail],q[tail-])) tail--;
q[++tail]=i;
}
printf("%lld",f[n]);
}

BZOJ3437:小P的牧场(斜率优化DP)的更多相关文章

  1. bzoj3437小P的牧场 斜率优化dp

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1542  Solved: 849[Submit][Status][Discus ...

  2. 【bzoj3437】小P的牧场 斜率优化dp

    题目描述 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个 ...

  3. BZOJ 3437: 小P的牧场 斜率优化DP

    3437: 小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场 ...

  4. bzoj3427小P的牧场(斜率优化dp)

    小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这n个牧场,他需要在某些牧场上面建立控制站,每个牧场上只能建立一个控制站,每个控制站控制的牧场是它所在的牧 ...

  5. 【BZOJ3437】小P的牧场 斜率优化

    [BZOJ3437]小P的牧场 Description 背景 小P是个特么喜欢玩MC的孩纸... 描述 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号),于是他就烦恼了:为了控制这 ...

  6. bzoj 3437: 小P的牧场 -- 斜率优化

    3437: 小P的牧场 Time Limit: 10 Sec  Memory Limit: 128 MB Description 小P在MC里有n个牧场,自西向东呈一字形排列(自西向东用1…n编号), ...

  7. BZOJ3437 小P的牧场 动态规划 斜率优化

    原文链接http://www.cnblogs.com/zhouzhendong/p/8696321.html 题目传送门 - BZOJ3437 题意 给定两个序列$a,b$,现在划分$a$序列. 被划 ...

  8. bzoj3437小P的牧场

    bzoj3437小P的牧场 题意: n个牧场,在每个牧场见控制站的花费为ai,在该处建控制站能控制从此处到左边第一个控制站(或边界)之间的牧场.一个牧场被控制的花费等于它到控制它的控制站之间的牧场数目 ...

  9. bzoj-4518 4518: [Sdoi2016]征途(斜率优化dp)

    题目链接: 4518: [Sdoi2016]征途 Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地 ...

随机推荐

  1. Python+Selenium操作select下拉框

    首先需要倒入Select模块: from selenium.webdriver.support.select import Select 常用方法: 通过索引定位:select_by_index() ...

  2. 【3dsMax安装失败,如何卸载、安装3dMax 2011?】

    AUTODESK系列软件着实令人头疼,安装失败之后不能完全卸载!!!(比如maya,cad,3dsmax等).有时手动删除注册表重装之后还是会出现各种问题,每个版本的C++Runtime和.NET f ...

  3. 使用Razor

    新建一个名称为Rezor的mvc空项目,定义一个模型内容 public class Product { //定义模型 public int ProductID { get; set; } public ...

  4. git每次提交都输入密码

    打开gitbash执行即可 git config --global credential.helper store 长期储存密码,因为git默认是不储存密码的,不执行这条命令的话每次更新代码,或者提交 ...

  5. 序列化json和protobuf大小比较

    使用protobuf序列化为二进制和json序列化字符串大小比较 代码demo package com.gxf.demo; import java.io.*; public class Ptotobu ...

  6. 自己用到的vim常用命令

    一.前言 这里整理的是我在实习期间用到的常用vim命令,特记录如下,以免忘记. 二.vim常用命令 1.vim中的光标移动 shift+6(^):跳到行首(第一个非空格字符)(注:在shell跳到行首 ...

  7. python之迭代器

    原文 我们已经知道,可以直接作用于for循环的数据类型有以下几种: 一类是集合数据类型,如list.tuple.dict.set.str等: 一类是generator,包括生成器和带yield的gen ...

  8. 不定宽高的文字在div中垂直居中

    本人在面试的时候被问到:如何使一段不定宽高的文字垂直居中呢? 现在来总结一下: 在body中写入结构 <div id="main">    <div id=&qu ...

  9. java自动生成jar包工具

    jar -cfe Main.jar com.xjq.test.Main com/xjq/test/Main.class jar -cmef manifest.mf com.xjq.test.Main ...

  10. CSS样式编写案例

    1.制作如图三角形效果: 步骤一:将右侧盒子设置为相对定位 步骤二:在右侧盒子里面新建个子盒子,设置宽高相等,为正方形,绝对定位 步骤三:将绝对定位的盒子用CSS3旋转属性旋转 2.制定如图的序列号 ...