storm和kafka整合

依赖

<dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-kafka-client</artifactId>
<version>1.2.2</version>
<scope>provided</scope>
</dependency> <dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-clients</artifactId>
<version>2.1.0</version>
</dependency> <dependency>
<groupId>org.apache.storm</groupId>
<artifactId>storm-core</artifactId>
<version>1.2.2</version>
<scope>provided</scope>
</dependency>

App

package test;

import java.util.List;
import java.util.concurrent.TimeUnit; import org.apache.kafka.clients.consumer.ConsumerConfig;
import org.apache.kafka.clients.consumer.ConsumerRecord;
import org.apache.storm.kafka.spout.Func;
import org.apache.storm.kafka.spout.KafkaSpout;
import org.apache.storm.kafka.spout.KafkaSpoutConfig;
import org.apache.storm.kafka.spout.KafkaSpoutRetryExponentialBackoff;
import org.apache.storm.kafka.spout.KafkaSpoutConfig.FirstPollOffsetStrategy;
import org.apache.storm.kafka.spout.KafkaSpoutRetryExponentialBackoff.TimeInterval;
import org.apache.storm.topology.TopologyBuilder;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values; public class App
{
public static void main( String[] args ) throws Exception{ KafkaSpoutConfig<String, String> conf = KafkaSpoutConfig
.builder("worker1:9092,worker2:9092,worker3:9092", "test") // 你的kafka集群地址和topic
.setProp(ConsumerConfig.GROUP_ID_CONFIG, "consumer") // 设置消费者组,随便写
.setProp(ConsumerConfig.MAX_PARTITION_FETCH_BYTES_CONFIG, 1024 * 1024 * 4)
// .setRecordTranslator(new MyRecordTranslator())
.setRecordTranslator( // 翻译函数,就是将消息过滤下,具体操作自己玩
new MyRecordTranslator(),
new Fields("word")
)
.setRetry( // 某条消息处理失败的策略
new KafkaSpoutRetryExponentialBackoff(
new TimeInterval(500L, TimeUnit.MICROSECONDS),
TimeInterval.milliSeconds(2),
Integer.MAX_VALUE,
TimeInterval.seconds(10)
)
)
.setOffsetCommitPeriodMs(10000)
.setFirstPollOffsetStrategy(FirstPollOffsetStrategy.LATEST)
.setMaxUncommittedOffsets(250)
.build(); TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("KafkaSpout", new KafkaSpout<String, String>(conf), 1);
builder.setBolt("Recieve", new RecieveBolt(), 1).globalGrouping("KafkaSpout");
builder.setBolt("Consume", new ConsumeBolt(), 1).globalGrouping("Recieve");
builder.createTopology(); // 集群运行
// Config config = new Config();
// config.setNumWorkers(3);
// config.setDebug(true);
// StormSubmitter.submitTopology("teststorm", config, builder.createTopology()); // 本地测试
// Config config = new Config();
// config.setNumWorkers(3);
// config.setDebug(true);
// config.setMaxTaskParallelism(20);
// LocalCluster cluster = new LocalCluster();
// cluster.submitTopology("teststorm", config, builder.createTopology());
// Utils.sleep(60000);
// // 执行完毕,关闭cluster
// cluster.shutdown();
}
} class MyRecordTranslator implements Func<ConsumerRecord<String, String>, List<Object>> { private static final long serialVersionUID = 1L; @Override
public List<Object> apply(ConsumerRecord<String, String> record) {
return new Values(record.value());
} }

ConsumeBolt

package test;

import java.io.FileWriter;
import java.io.IOException;
import java.util.Map;
import java.util.UUID; import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Tuple; public class ConsumeBolt extends BaseRichBolt { private static final long serialVersionUID = -7114915627898482737L; private FileWriter fileWriter = null; private OutputCollector collector; public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) { this.collector = collector; try {
fileWriter = new FileWriter("/usr/local/tmpdata/" + UUID.randomUUID());
// fileWriter = new FileWriter("C:\\Users\\26401\\Desktop\\test\\" + UUID.randomUUID());
} catch (IOException e) {
throw new RuntimeException(e);
}
} public void execute(Tuple tuple) { try {
String word = tuple.getStringByField("word") + "......." + "\n";
fileWriter.write(word);
fileWriter.flush();
System.out.println(word);
} catch (IOException e) {
throw new RuntimeException(e);
}
} public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) { }
}

RecieveBolt

package test;

import java.util.Map;

import org.apache.storm.task.OutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichBolt;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Tuple;
import org.apache.storm.tuple.Values; public class RecieveBolt extends BaseRichBolt { private static final long serialVersionUID = -4758047349803579486L; private OutputCollector collector; public void prepare(Map stormConf, TopologyContext context, OutputCollector collector) {
this.collector = collector;
} public void execute(Tuple tuple) {
// 将spout传递过来的tuple值进行转换
this.collector.emit(new Values(tuple.getStringByField("word") + "!!!"));
} // 声明发送消息的字段名
public void declareOutputFields(OutputFieldsDeclarer outputFieldsDeclarer) {
outputFieldsDeclarer.declare(new Fields("word"));
}
}

storm和kafka整合的更多相关文章

  1. 5 kafka整合storm

    本博文的主要内容有 .kafka整合storm   .storm-kafka工程  .storm + kafka的具体应用场景有哪些? 要想kafka整合storm,则必须要把这个storm-kafk ...

  2. Flume+Kafka+storm的连接整合

    Flume-ng Flume是一个分布式.可靠.和高可用的海量日志采集.聚合和传输的系统. Flume的文档可以看http://flume.apache.org/FlumeUserGuide.html ...

  3. Flume+Kafka整合

    脚本生产数据---->flume采集数据----->kafka消费数据------->storm集群处理数据 日志文件使用log4j生成,滚动生成! 当前正在写入的文件在满足一定的数 ...

  4. Storm 学习之路(九)—— Storm集成Kafka

    一.整合说明 Storm官方对Kafka的整合分为两个版本,官方说明文档分别如下: Storm Kafka Integration : 主要是针对0.8.x版本的Kafka提供整合支持: Storm ...

  5. Storm 系列(九)—— Storm 集成 Kafka

    一.整合说明 Storm 官方对 Kafka 的整合分为两个版本,官方说明文档分别如下: Storm Kafka Integration : 主要是针对 0.8.x 版本的 Kafka 提供整合支持: ...

  6. flume与kafka整合

    flume与kafka整合 前提: flume安装和测试通过,可参考:http://www.cnblogs.com/rwxwsblog/p/5800300.html kafka安装和测试通过,可参考: ...

  7. Storm集成Kafka应用的开发

    我们知道storm的作用主要是进行流式计算,对于源源不断的均匀数据流流入处理是非常有效的,而现实生活中大部分场景并不是均匀的数据流,而是时而多时而少的数据流入,这种情况下显然用批量处理是不合适的,如果 ...

  8. storm集成kafka

    kafkautil: import java.util.Properties; import kafka.javaapi.producer.Producer; import kafka.produce ...

  9. 【转】Spark Streaming和Kafka整合开发指南

    基于Receivers的方法 这个方法使用了Receivers来接收数据.Receivers的实现使用到Kafka高层次的消费者API.对于所有的Receivers,接收到的数据将会保存在Spark ...

随机推荐

  1. lightoj1197区间素数筛

    模板题,不过好像有点问题,当a==1的时候,答案把一也算进去了,要减去 #include<map> #include<set> #include<cmath> #i ...

  2. Oracle DBLink连接数过多的问题(Ora-02020)

    前不久开发人员编译存储时报ORA -02020 错,如下是解决方案步骤.   报错全信息: Error:OR A -04052在查: 找远程对象 NIP.PB_PERADDRESSLIST@DB_NI ...

  3. opencv:创建滑动条

    函数原型: ,); #include <opencv.hpp> using namespace cv; #define WINDOW_NAME "线性混合示例" // ...

  4. Linux安全运维笔记2018-03-01更新

    本人wechat:YWNlODAyMzU5MTEzMTQ=. *** # 修改关键目录文件的权限 chmod u-x,g-r /home/lema chmod 444 /home/lema # 用户权 ...

  5. mysql int(3)与int(11)的区别

    总结,int(M) zerofill,加上zerofill后M才表现出有点点效果,比如 int(3) zerofill,你插入到数据库里的是10,则实际插入为010,也就是在前面补充加了一个0.如果i ...

  6. Qt之图形(QPainterPath)

    简述 QPainterPath 类(绘图路径)提供了一个容器,用于绘图操作,可以创建和重用图形形状. 绘图路径是由许多图形化的构建块组成的对象,例如:矩形.椭圆.直线和曲线.构建块可以加入在封闭的子路 ...

  7. 微信小程序调微信支付

    今天写小程序的支付接口,参照的当然是微信支付API了.(结尾附上第二步全部代码php版) 另外,我也参照了简书上的这篇文章,浅显易懂:https://www.jianshu.com/p/72f5c1e ...

  8. PhotoShop脚本指南

    Photoshop脚本语言 Photoshop支持三种脚本语言:AppleScript,VBScript,JavaScript.其中AppleScript为苹果系统,VBScript为Windows操 ...

  9. 使用第三方图表工具——Chart.js

    效果: 代码: <!DOCTYPE html> <html> <head lang="en"> <meta charset="U ...

  10. Linux下windows中文文本文件乱码问题

    table of content: 乱码问题 用gedit选择正确的字符编码打开文件 文件转码 总结 §乱码 Fedora安装时默认用UTF-8字符编码方式, 这么做有国际化的好处(和很多用utf-8 ...