题意:

有一个长度为$N$的递增序列$S_i$,要把它分成$X,Y$两组,使得$X$中元素两两之差不小于$A$且$Y$中元素两两之差不小于$B$,求方案数

首先考虑$O\left(n^2\right)$的做法:

为了方便,我们令$S_0=-\infty$

设$f_{M,i,j}(M\in\{X,Y\},1\leq i\leq n,0\leq j\lt i)$表示已划分好$S_{1\cdots i}$且$S_j$是最后一个不属于$M$的元素的方案数

已算好$f_{X,1\cdots i,j}$和$f_{Y,1\cdots i,j}$,如何转移?

①若$S_{i+1}-S_i\geq A$,$S_{i+1}$可被放入$X$中,则$f_{X,i+1,0\cdots i-1}=f_{X,i,0\cdots i-1}$

否则$S_i,S_{i+1}$不可一起被放入$X$中,$f_{X,i+1,0\cdots i-1}=0$

②显然$f_{Y,i+1,i}=\sum\limits_{j=0}^{i-1}[S_{i+1}-S_j\geq B]f_{X,i,j}$

对$f_Y$的处理相似

最后的答案就是$\sum\limits_{i=0}^{n-1}f_{X,n,i}+\sum\limits_{i=0}^{n-1}f_{Y,n,i}$

#include<stdio.h>
#define ll long long
#define mod 1000000007
int fx[2010][2010],fy[2010][2010];
ll a[2010];
int main(){
	int n,i,j;
	ll A,B;
	scanf("%d%lld%lld",&n,&A,&B);
	for(i=1;i<=n;i++)scanf("%lld",a+i);
	a[0]=-4223372036854775807ll;
	fx[1][0]=fy[1][0]=1;
	for(i=1;i<n;i++){
		if(a[i+1]-a[i]>=A){
			for(j=0;j<i;j++)fx[i+1][j]=fx[i][j];
		}
		if(a[i+1]-a[i]>=B){
			for(j=0;j<i;j++)fy[i+1][j]=fy[i][j];
		}
		for(j=0;j<i;j++){
			if(a[i+1]-a[j]>=B)fy[i+1][i]=(fy[i+1][i]+fx[i][j])%mod;
			if(a[i+1]-a[j]>=A)fx[i+1][i]=(fx[i+1][i]+fy[i][j])%mod;
		}
	}
	j=0;
	for(i=0;i<n;i++)j=((j+fx[n][i])%mod+fy[n][i])%mod;
	printf("%d",j);
}

考虑优化~

首先我们肯定不能开二维数组,考虑当前DP到$S_i$,只存$f_{M,j}$,并看一看当$i$变为$i+1$对答案的影响

因为$S$是递增的,所以满足$S_{i+1}-S_j\geq B$的$S_j$一定是一段前缀,所以我们可以用二分找到右端点并用线段树求区间和

其他转移就相当于线段树的单点更新

再用lazy tag实现清零即可

#include<stdio.h>
#define ll long long
#define mod 1000000007
int sumx[400010],sumy[400010],lazx[400010],lazy[400010],*laz,*sum,n;
ll a[100010];
void pushdown(int x){
	if(laz[x]){
		laz[x<<1]=laz[x<<1|1]=1;
		sum[x<<1]=sum[x<<1|1]=0;
		laz[x]=0;
	}
}
int query(int L,int R,int l,int r,int x){
	if(L<=l&&r<=R)return sum[x];
	pushdown(x);
	int mid=(l+r)>>1,ans=0;
	if(L<=mid)ans=(ans+query(L,R,l,mid,x<<1))%mod;
	if(mid<R)ans=(ans+query(L,R,mid+1,r,x<<1|1))%mod;
	return ans;
}
void modify(int pos,int v,int l,int r,int x){
	if(l==r){
		sum[x]=(sum[x]+v)%mod;
		return;
	}
	pushdown(x);
	int mid=(l+r)>>1;
	if(pos<=mid)
		modify(pos,v,l,mid,x<<1);
	else
		modify(pos,v,mid+1,r,x<<1|1);
	sum[x]=(sum[x<<1]+sum[x<<1|1])%mod;
}
int queryx(int L,int R){
	laz=lazx;
	sum=sumx;
	return query(L,R,0,n-1,1);
}
void modifyx(int pos,int v){
	laz=lazx;
	sum=sumx;
	modify(pos,v,0,n-1,1);
}
int queryy(int L,int R){
	laz=lazy;
	sum=sumy;
	return query(L,R,0,n-1,1);
}
void modifyy(int pos,int v){
	laz=lazy;
	sum=sumy;
	modify(pos,v,0,n-1,1);
}
int main(){
	int i,l,r,mid,x,t1,t2;
	ll A,B;
	scanf("%d%lld%lld",&n,&A,&B);
	for(i=1;i<=n;i++)scanf("%lld",a+i);
	a[0]=-4223372036854775807ll;
	modifyx(0,1);
	modifyy(0,1);
	for(i=1;i<n;i++){
		l=0;
		r=i-1;
		while(l<=r){
			mid=(l+r)>>1;
			if(a[i+1]-a[mid]>=B){
				x=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		t1=queryx(0,x);
		l=0;
		r=i-1;
		while(l<=r){
			mid=(l+r)>>1;
			if(a[i+1]-a[mid]>=A){
				x=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		t2=queryy(0,x);
		if(a[i+1]-a[i]<A){
			sumx[1]=0;
			lazx[1]=1;
		}
		if(a[i+1]-a[i]<B){
			sumy[1]=0;
			lazy[1]=1;
		}
		modifyy(i,t1);
		modifyx(i,t2);
	}
	printf("%d",(queryx(0,n-1)+queryy(0,n-1))%mod);
}

[AGC009C]Division into 2的更多相关文章

  1. AGC009C Division into Two

    题意 有\(n\)个严格升序的数,请你分成两个集合\(A\)和\(B\),其中一个集合任意两数之差不小于\(x\),另一集合任意两数之差不小于\(y\). 问方案数,集合可以为空. $n \le 10 ...

  2. 【AGC009C】Division into Two

    [AGC009C]Division into Two 题面 洛谷 题解 首先有一个比较显然的\(n^2\)算法: 设\(f_{i,j}\)表示\(A\)序列当前在第\(i\)个,\(B\)序列当前在第 ...

  3. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  4. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  5. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. taotao用户注册前台页面

    注册页面效果: 注册jsp: <%@ page language="java" contentType="text/html; charset=UTF-8" ...

  2. [bzoj 2115]线性基+图论

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=2115 给定一个带权无向图,要找出从1到n路径权值异或和最大的那一条的路径异或和. 考虑1到 ...

  3. Hbase写入量大导致region过大无法split问题

    最近在线上往hbase导数据,因为hbase写入能力比较强,没有太在意写的问题.让业务方进行历史数据的导入操作,中间发现一个问题,写入速度太快,并且业务数据集中到其中一个region,这个region ...

  4. 关于javascript中的this 一段小实例深有体会啊

    先声明鄙人正在努力的把脚抬进门来,说的都是比较粗浅的知识,但都是我实践中得出的体会,很深刻.  正在自学中挣扎的DOG. 先看段代码: function highlightRows() { if(!d ...

  5. JetbrainsCrack

    http://blog.csdn.net/lcyong_/article/details/61205672 http://blog.csdn.net/nn_jbrs/article/details/7 ...

  6. 河南省第十届省赛 Plumbing the depth of lake (模拟)

    title: Plumbing the depth of lake 河南省第十届省赛 题目描述: There is a mysterious lake in the north of Tibet. A ...

  7. React第三次入门

    传统HTML开发在处理越来越多的服务器数据和用户交互数据反应到复杂界面的时候,代码量越来越大,难以维护. Angular是基于MVVM的开发框架,重量级..不适用于移动端的web栈, 其UI组件的封装 ...

  8. Linux下面无线网络配置

    原文:http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html 配置 WLAN 特定参数 iwconfig ethX essid ...

  9. 安全测试===Mysql 注入技巧学习 MySQL注入技巧(2)

    原文地址:http://websec.files.wordpress.com/2010/11/sqli2.pdf 0x00.介绍 也可以参考瞌腄龙的mysql注入科普:http://drops.woo ...

  10. SuSE Linux10.1 网络设置以及和主机通信

    SuSE Linux10.1 网络设置以及和主机通信 http://www.cnblogs.com/kevintian/articles/1086994.html 在VMWare上安装好SuSE之后, ...