题意:

有一个长度为$N$的递增序列$S_i$,要把它分成$X,Y$两组,使得$X$中元素两两之差不小于$A$且$Y$中元素两两之差不小于$B$,求方案数

首先考虑$O\left(n^2\right)$的做法:

为了方便,我们令$S_0=-\infty$

设$f_{M,i,j}(M\in\{X,Y\},1\leq i\leq n,0\leq j\lt i)$表示已划分好$S_{1\cdots i}$且$S_j$是最后一个不属于$M$的元素的方案数

已算好$f_{X,1\cdots i,j}$和$f_{Y,1\cdots i,j}$,如何转移?

①若$S_{i+1}-S_i\geq A$,$S_{i+1}$可被放入$X$中,则$f_{X,i+1,0\cdots i-1}=f_{X,i,0\cdots i-1}$

否则$S_i,S_{i+1}$不可一起被放入$X$中,$f_{X,i+1,0\cdots i-1}=0$

②显然$f_{Y,i+1,i}=\sum\limits_{j=0}^{i-1}[S_{i+1}-S_j\geq B]f_{X,i,j}$

对$f_Y$的处理相似

最后的答案就是$\sum\limits_{i=0}^{n-1}f_{X,n,i}+\sum\limits_{i=0}^{n-1}f_{Y,n,i}$

#include<stdio.h>
#define ll long long
#define mod 1000000007
int fx[2010][2010],fy[2010][2010];
ll a[2010];
int main(){
	int n,i,j;
	ll A,B;
	scanf("%d%lld%lld",&n,&A,&B);
	for(i=1;i<=n;i++)scanf("%lld",a+i);
	a[0]=-4223372036854775807ll;
	fx[1][0]=fy[1][0]=1;
	for(i=1;i<n;i++){
		if(a[i+1]-a[i]>=A){
			for(j=0;j<i;j++)fx[i+1][j]=fx[i][j];
		}
		if(a[i+1]-a[i]>=B){
			for(j=0;j<i;j++)fy[i+1][j]=fy[i][j];
		}
		for(j=0;j<i;j++){
			if(a[i+1]-a[j]>=B)fy[i+1][i]=(fy[i+1][i]+fx[i][j])%mod;
			if(a[i+1]-a[j]>=A)fx[i+1][i]=(fx[i+1][i]+fy[i][j])%mod;
		}
	}
	j=0;
	for(i=0;i<n;i++)j=((j+fx[n][i])%mod+fy[n][i])%mod;
	printf("%d",j);
}

考虑优化~

首先我们肯定不能开二维数组,考虑当前DP到$S_i$,只存$f_{M,j}$,并看一看当$i$变为$i+1$对答案的影响

因为$S$是递增的,所以满足$S_{i+1}-S_j\geq B$的$S_j$一定是一段前缀,所以我们可以用二分找到右端点并用线段树求区间和

其他转移就相当于线段树的单点更新

再用lazy tag实现清零即可

#include<stdio.h>
#define ll long long
#define mod 1000000007
int sumx[400010],sumy[400010],lazx[400010],lazy[400010],*laz,*sum,n;
ll a[100010];
void pushdown(int x){
	if(laz[x]){
		laz[x<<1]=laz[x<<1|1]=1;
		sum[x<<1]=sum[x<<1|1]=0;
		laz[x]=0;
	}
}
int query(int L,int R,int l,int r,int x){
	if(L<=l&&r<=R)return sum[x];
	pushdown(x);
	int mid=(l+r)>>1,ans=0;
	if(L<=mid)ans=(ans+query(L,R,l,mid,x<<1))%mod;
	if(mid<R)ans=(ans+query(L,R,mid+1,r,x<<1|1))%mod;
	return ans;
}
void modify(int pos,int v,int l,int r,int x){
	if(l==r){
		sum[x]=(sum[x]+v)%mod;
		return;
	}
	pushdown(x);
	int mid=(l+r)>>1;
	if(pos<=mid)
		modify(pos,v,l,mid,x<<1);
	else
		modify(pos,v,mid+1,r,x<<1|1);
	sum[x]=(sum[x<<1]+sum[x<<1|1])%mod;
}
int queryx(int L,int R){
	laz=lazx;
	sum=sumx;
	return query(L,R,0,n-1,1);
}
void modifyx(int pos,int v){
	laz=lazx;
	sum=sumx;
	modify(pos,v,0,n-1,1);
}
int queryy(int L,int R){
	laz=lazy;
	sum=sumy;
	return query(L,R,0,n-1,1);
}
void modifyy(int pos,int v){
	laz=lazy;
	sum=sumy;
	modify(pos,v,0,n-1,1);
}
int main(){
	int i,l,r,mid,x,t1,t2;
	ll A,B;
	scanf("%d%lld%lld",&n,&A,&B);
	for(i=1;i<=n;i++)scanf("%lld",a+i);
	a[0]=-4223372036854775807ll;
	modifyx(0,1);
	modifyy(0,1);
	for(i=1;i<n;i++){
		l=0;
		r=i-1;
		while(l<=r){
			mid=(l+r)>>1;
			if(a[i+1]-a[mid]>=B){
				x=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		t1=queryx(0,x);
		l=0;
		r=i-1;
		while(l<=r){
			mid=(l+r)>>1;
			if(a[i+1]-a[mid]>=A){
				x=mid;
				l=mid+1;
			}else
				r=mid-1;
		}
		t2=queryy(0,x);
		if(a[i+1]-a[i]<A){
			sumx[1]=0;
			lazx[1]=1;
		}
		if(a[i+1]-a[i]<B){
			sumy[1]=0;
			lazy[1]=1;
		}
		modifyy(i,t1);
		modifyx(i,t2);
	}
	printf("%d",(queryx(0,n-1)+queryy(0,n-1))%mod);
}

[AGC009C]Division into 2的更多相关文章

  1. AGC009C Division into Two

    题意 有\(n\)个严格升序的数,请你分成两个集合\(A\)和\(B\),其中一个集合任意两数之差不小于\(x\),另一集合任意两数之差不小于\(y\). 问方案数,集合可以为空. $n \le 10 ...

  2. 【AGC009C】Division into Two

    [AGC009C]Division into Two 题面 洛谷 题解 首先有一个比较显然的\(n^2\)算法: 设\(f_{i,j}\)表示\(A\)序列当前在第\(i\)个,\(B\)序列当前在第 ...

  3. python from __future__ import division

    1.在python2 中导入未来的支持的语言特征中division(精确除法),即from __future__ import division ,当我们在程序中没有导入该特征时,"/&qu ...

  4. [LeetCode] Evaluate Division 求除法表达式的值

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

  5. 关于分工的思考 (Thoughts on Division of Labor)

    Did you ever have the feeling that adding people doesn't help in software development? Did you ever ...

  6. POJ 3140 Contestants Division 树形DP

    Contestants Division   Description In the new ACM-ICPC Regional Contest, a special monitoring and su ...

  7. 暴力枚举 UVA 725 Division

    题目传送门 /* 暴力:对于每一个数都判断,是否数字全都使用过一遍 */ #include <cstdio> #include <iostream> #include < ...

  8. GDC2016【全境封锁(Tom Clancy's The Division)】对为何对应Eye Tracked System,以及各种优点的演讲报告

    GDC2016[全境封锁(Tom Clancy's The Division)]对为何对应Eye Tracked System,以及各种优点的演讲报告 原文 4Gamer編集部:松本隆一 http:/ ...

  9. Leetcode: Evaluate Division

    Equations are given in the format A / B = k, where A and B are variables represented as strings, and ...

随机推荐

  1. [codeforces gym Matrix God]随机矩阵乘法

    题目链接:http://codeforces.com/gym/101341/problem/I 随机真是一个神奇的方法.原本矩阵乘法是n^3的复杂度,但是这个题是让判断两个矩阵是否相等,只需要在两个矩 ...

  2. Welcome to ShangHai <码农上漂记>

    来上海这边快三周了,一切都还算顺利,多亏了朋友们的帮助,要不就得街头打地铺了.对于上海这样的大都市,年轻的我们都想挤一挤,凑凑热闹,实现自己的小小抱负.然而不是每个人都混的起的.以前的我还总想着来大城 ...

  3. Ubuntu 编译Webkit --gtk

    转载自:http://www.linuxidc.com/Linux/2011-10/44809.htm webkit是一个浏览器内核,google的chrome就是基于它的,下面介绍一下如何在Ubun ...

  4. 调整文本输入框placeholder的颜色等样式

    input::-webkit-input-placeholder{     color: white !important;}input:-moz-placeholder{    color: whi ...

  5. python实现多个文件的分发

    之前写的脚本只能分发一个配置,每次分发多个配置总要执行很多次,很不爽,于是就有了这个脚本 from multiprocessing import Process import paramiko imp ...

  6. 【hdu1251-统计难题】Trie

    http://acm.hust.edu.cn/vjudge/problem/16379 题意:给定多个单词,多次询问符合某前缀的单词有多少个. 题解:tire.数组开了5*10^6才A,不然就RE. ...

  7. linux下面which whereis find locate的使用

    我们经常在linux要查找某个文件,但不知道放在哪里了,可以使用下面的一些命令来搜索.这些是从网上找到的资料,因为有时很长时间不会用到,当要用的时候经常弄混了,所以放到这里方便使用. which    ...

  8. 干货:MySQL数据库优化参考

    本文整理了一些MySQL的通用优化方法,做个简单的总结分享,旨在帮助那些没有专职MySQL DBA的企业做好基本的优化工作,至于具体的SQL优化,大部分通过加适当的索引即可达到效果,更复杂的就需要具体 ...

  9. HDU1083(二分图最大匹配vector实现)

    Courses Time Limit: 20000/10000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total S ...

  10. C# 获取存在DataTable1不存在DataTable2的数据的快速方法

    通过合并和获得改变两个方法获得差异的部分: dataTable1.AcceptChanges();dataTable1.Merge(dataTable2);DataTable changesTable ...