[BZOJ4337][BJOI2015]树的同构(树的最小表示法)
4337: BJOI2015 树的同构
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 1023 Solved: 436
[Submit][Status][Discuss]Description
树是一种很常见的数据结构。我们把N个点,N-1条边的连通无向图称为树。若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树。对于两个树T1和T2,如果能够把树T1的所有点重新标号,使得树T1和树T2完全相同,那么这两个树是同构的。也就是说,它们具有相同的形态。现在,给你M个有根树,请你把它们按同构关系分成若干个等价类。Input
第一行,一个整数M。接下来M行,每行包含若干个整数,表示一个树。第一个整数N表示点数。接下来N个整数,依次表示编号为1到N的每个点的父亲结点的编号。根节点父亲结点编号为0。Output
输出M行,每行一个整数,表示与每个树同构的树的最小编号。Sample Input
4
4 0 1 1 2
4 2 0 2 3
4 0 1 1 1
4 0 1 2 3Sample Output
1
1
3
1HINT
【样例解释】编号为1, 2, 4 的树是同构的。编号为3 的树只与它自身同构。100% 的数据中,1 ≤ N, M ≤ 50。Source
求出括号序列,对于每个点,将所有儿子的括号序列按字典序从小到大加到自己的括号序列中,得到最小表示法。
关于选根的问题,因为树最多有两个重心,所以求出重心中最小表示较大的那个(较小亦可)比较即可。
#include<cstdio>
#include<string>
#include<algorithm>
#define rep(i,l,r) for (int i=l; i<=r; i++)
#define For(i,x) for (int i=h[x]; i; i=nxt[i])
using namespace std; const int N=;
string hash[N],q[N],val[N];
int x,T,f[N],sz[N],n,mx,cnt,to[N<<],nxt[N<<],h[N];
void add(int u,int v){ to[++cnt]=v; nxt[cnt]=h[u]; h[u]=cnt; } void findrt(int x,int fa){
sz[x]=; f[x]=;
For(i,x) if (to[i]!=fa) findrt(to[i],x),sz[x]+=sz[to[i]],f[x]=max(f[x],sz[to[i]]);
f[x]=max(f[x],n-sz[x]); mx=min(f[x],mx);
} void dfs(int x,int fa){
hash[x]="("; For(i,x) if (to[i]!=fa) dfs(to[i],x);
int tot=; For(i,x) if (to[i]!=fa) q[++tot]=hash[to[i]];
sort(q+,q+tot+);
rep(i,,tot) hash[x]+=q[i]; hash[x]+=")";
} string solve(){
string t=""; scanf("%d",&n); mx=n;
rep(i,,n) h[i]=; cnt=;
rep(i,,n) { scanf("%d",&x); if (x) add(x,i),add(i,x); }
findrt(,);
rep(i,,n) if (f[i]==mx){
dfs(i,); if (hash[i]>t) t=hash[i];
}
return t;
} int main(){
freopen("bzoj4337.in","r",stdin);
freopen("bzoj4337.out","w",stdout);
scanf("%d",&T);
rep(i,,T) val[i]=solve();
rep(i,,T){
int k=i;
for (int j=i; j; j--) if (val[j]==val[i]) k=j;
printf("%d\n",k);
}
return ;
}
[BZOJ4337][BJOI2015]树的同构(树的最小表示法)的更多相关文章
- bzoj4337: BJOI2015 树的同构 树哈希判同构
题目链接 bzoj4337: BJOI2015 树的同构 题解 树哈希的一种方法 对于每各节点的哈希值为hash[x] = hash[sonk[x]] * p[k]; p为素数表 代码 #includ ...
- BZOJ4337:[BJOI2015]树的同构(树hash)
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...
- BZOJ 4337: BJOI2015 树的同构 树hash
4337: BJOI2015 树的同构 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4337 Description 树是一种很常见的数 ...
- BZOJ.4337.[BJOI2015]树的同构(树哈希)
BZOJ 洛谷 \(Description\) 给定\(n\)棵无根树.对每棵树,输出与它同构的树的最小编号. \(n及每棵树的点数\leq 50\). \(Solution\) 对于一棵无根树,它的 ...
- [BJOI2015]树的同构 && 树哈希教程
题目链接 有根树的哈希 离散数学中对树哈希的描述在这里.大家可以看看. 判断有根树是否同构,可以考虑将有根树编码.而编码过程中,要求保留树形态的特征,同时忽略子树顺序的不同.先来看一看这个方法: 不妨 ...
- BZOJ4337 树的同构 (树哈希)(未完成)
样例迷,没过 交了30pts #include <cstdio> #include <iostream> #include <cstring> #include & ...
- 【BZOJ4337】BJOI2015 树的同构 括号序列
[BZOJ4337]BJOI2015 树的同构 Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱 ...
- BZOJ4337:[BJOI2015]树的同构——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=4337 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根, ...
- 刷题总结——树的同构(bzoj4337 树上hash)
Description 树是一种很常见的数据结构. 我们把N个点,N-1条边的连通无向图称为树. 若将某个点作为根,从根开始遍历,则其它的点都有一个前驱,这个树就成为有根树. 对于两个树T1和T2,如 ...
随机推荐
- java注解(Annotation)的简单介绍
注解你可以理解为一个特殊的类,或者接口其自定义个格式形如 public @interface 注解名(){ //注解的属性,特别提醒当注解的属性为value时,在对其赋值时,可以不写value,而直接 ...
- Kafka配置文档
http://kafka.apache.org/08/configuration.html
- mysql————表类型(存储引擎)的选择
表类型(存储引擎)的选择 7.1 mysql存储引擎概述 插件式存储引擎是mysql数据库最重要的特性之一,用户可以根据应用的需要选择ruhr存储和索引数据,是否使用事务等. InnoDB和BDB提供 ...
- 使用Spring AOP实现读写分离(MySql实现主从复制)
1. 背景 我们一般应用对数据库而言都是“读多写少”,也就说对数据库读取数据的压力比较大,有一个思路就是说采用数据库集群的方案,其中一个是主库,负责写入数据,我们称之为:写库: 其它都是从库,负责读 ...
- 【转载】惊天大悲剧-Hadoop的rmr和trash
转自:http://java-doom.iteye.com/blog/1898000 这两天在操作Hadoop集群时,由于一个误操作,制作了一个天大的悲剧 不小心把Hadoop集群上的所有文件全部删除 ...
- 一些常用的css片段
1. 单行文字溢出时省略号 .test{ overflow:hidden; text-overflow:ellipsis; white-space:nowrap; } 2. 多行文字溢出时省略号 .t ...
- 我自己的python开发环境
1.开发工具 eclipse 所有的版本下载: https://www.eclipse.org/downloads/index-packages.php , 我下载的是比较低的版本:https://w ...
- Quartus ModelSim联合仿真中的RAM初始化
Modelsim只支持Hex格式的初始化文件,文件需要放在仿真的根目录下,例如:.\simulation\modelsim:并且在利用Quartus宏生成IP时,选择的初始化文件必须用绝对路径!否则M ...
- VC6.0显示行号的插件
VC6.0显示行号的插件,很好很强大的显行号插件,使用VC编程的朋友再也不用烦恼VC6.0没有行号的编程环境了. VC显示行号插件使用说明:1. 如果你的VC安装在C盘,请拷贝文件VC6LineNum ...
- Ajax的Result工具类
ResultUtil.java package cn.qlq.util; import java.io.Serializable; public class ResultUtil<T> i ...