w

Stochastic matrix - Wikipedia  https://en.wikipedia.org/wiki/Stochastic_matrix

Suppose you have a timer and a row of five adjacent boxes, with a cat in the first box and a mouse in the fifth box at time zero. The cat and the mouse both jump to a random adjacent box when the timer advances. E.g. if the cat is in the second box and the mouse in the fourth one, the probability is one fourth that the cat will be in the first box and the mouse in the fifth after the timer advances. If the cat is in the first box and the mouse in the fifth one, the probability is one that the cat will be in box two and the mouse will be in box four after the timer advances. The cat eats the mouse if both end up in the same box, at which time the game ends. The random variable K gives the number of time steps the mouse stays in the game.

The Markov chain that represents this game contains the following five states specified by the combination of positions (cat,mouse). Note that while a naive enumeration of states would list 25 states, many are impossible either because the mouse can never have a lower index than the cat (as that would mean the mouse occupied the cat's box and survived to move past it), or because the sum of the two indices will always have even parity. In addition, the 3 possible states that lead to the mouse's death are combined into one:

  • State 1: (1,3)
  • State 2: (1,5)
  • State 3: (2,4)
  • State 4: (3,5)
  • State 5: game over: (2,2), (3,3) & (4,4).
 

stochastic matrix的更多相关文章

  1. 随机矩阵(stochastic matrix)

          最近一个月来一直在看Google排序的核心算法---PageRank排序算法[1][2],在多篇论文中涉及到图论.马尔可夫链的相关性质说明与应用[3][4][5],而最为关键,一直让我迷惑 ...

  2. 【十大经典数据挖掘算法】PageRank

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 我特地把PageRank作为[十大经 ...

  3. PageRank算法初探

    1. PageRank的由来和发展历史 0x1:源自搜索引擎的需求 Google早已成为全球最成功的互联网搜索引擎,在Google出现之前,曾出现过许多通用或专业领域搜索引擎.Google最终能击败所 ...

  4. pagerank 数学基础

    网页排序的任务中,最核心的难点在于判别网页质量. 将互联网上的网页模拟为一个节点,而这个网页的“出链”看做是指向其他节点的一条“有向边”,而“入链”则是其他节点指向这个节点的有向边.这样整个网络就变成 ...

  5. (zhuan) Deep Deterministic Policy Gradients in TensorFlow

          Deep Deterministic Policy Gradients in TensorFlow AUG 21, 2016 This blog from: http://pemami49 ...

  6. HDOJ 题目5097 Page Rank(矩阵运算,模拟)

    Page Rank Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 100000/100000 K (Java/Others) Tota ...

  7. Spark MLlib LDA 源代码解析

    1.Spark MLlib LDA源代码解析 http://blog.csdn.net/sunbow0 Spark MLlib LDA 应该算是比較难理解的,当中涉及到大量的概率与统计的相关知识,并且 ...

  8. MATLAB实例:对称双随机矩阵

    MATLAB实例:对称双随机矩阵 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 双随机矩阵(doubly stochastic matrix):元素属 ...

  9. KDD2016,Accepted Papers

    RESEARCH TRACK PAPERS - ORAL Title & Authors NetCycle: Collective Evolution Inference in Heterog ...

随机推荐

  1. 关于部分Android手机安装apk,无法获取正常的logo

    最近出现过类似的问题,主要出现是在,MediaPad X1 7.0和MediaPad M1 8.0. 发布应用的时候明明配置好了图标的,但是始终找不到原因,郁闷了好几个小时,也浪费了好几个小时. 如果 ...

  2. 批量杀进程 ps awk grep

    ps aux |grep lt-newindexclient |grep -v grep |awk grep -v 反向输出,即过滤掉带有grep的输出. xargs:传递参数

  3. ROS示例----导航功能包Husky_exploration

    ROS导航功能包示例husky amcl gmapping slam exploration 此功能包包含如下文件: 结构如下: $ tree -L 2 . ├── CMakeLists.txt -& ...

  4. C#实现svn server端的hook

    目标 要做的东东呢,就是在向svn提交文件的时候,可以再server端读到所有提交文件的内容,并根据某些规则验证文件的合法性,如果验证失败,则终止提交,并在svn的客户端上显示错误信息. 准备工作   ...

  5. Gradle build.gradle to Maven pom.xml ,终于找到你了。

    尊重原创:https://blog.csdn.net/kevin_luan/article/details/50996109 根据build.gradle 生成maven pox.xml 1.将以下配 ...

  6. javascript (function() { /* code */ })() 自执行函数

    (function(){ function a(){ alert("a"); } })(); 自执行匿名函数: 常见格式:(function() { /* code */ })() ...

  7. MySQL修改参数不重启生效

    地球人都知道,更新mysql配置my.cnf需要重启mysql才能生效,但是有些时候mysql在线上,不一定允许你重启,这时候应该怎么办呢? 看一个例子:mysql> show variable ...

  8. SpringMVC请求使用@PathVariable获取文件名称并且文件名中存在.导致路径被截取的问题

    在SpringMVC中,当使用@pathVariable通过Get请求获取路径名称时,如果路径名称上存在小数点,则获取不到小数点后面的内容,会被Spring截取. 比如我获取某一文件,路径是local ...

  9. 基于C#的超市收银管理系统

    基于C#的超市收银管理系统 前序 一直在忙学习Qt有关的知识,非常有幸这学期学习了C#.让我也感觉到了一丝欣慰,欣慰的是感觉好上手啊,学了几天顿时懂了.好多控件的使用方法好类似,尽管平时上课没有怎么认 ...

  10. linux fedora 14(内核2.6.35.6) PF_RING+libpcap 极速捕获千兆网数据包,不丢包

    前面讲到了libpcap 捕获数据包,尤其在千兆网的条件下,大量的丢包,网上搜索好久,大概都是PF_PACKET +MMAP,NAPI,PF_RING之类的方法,我对PF_RING+libpcap进行 ...